
Introduction Almgren Chriss Alfonsi Schied Price manipulation Linear transient impact Square-root model Conclusion

Optimal order execution

Jim Gatheral
(including joint work with Alexander Schied and Alla Slynko)

Scuola Nazionale Superiore di Pisa
July 13, 2012



Introduction Almgren Chriss Alfonsi Schied Price manipulation Linear transient impact Square-root model Conclusion

References

[Almgren] Robert Almgren, Equity market impact, Risk July 2005, 57–62.

[Almgren and Chriss] Robert Almgren and Neil Chriss, Optimal execution of portfolio transactions, Journal

of Risk 3 5–40 (2001).
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Overview of execution algorithm design

Typically, an execution algorithm has three layers:

The macrotrader

This highest level layer decides how to slice the order: when
the algorithm should trade, in what size and for roughly how
long.

The microtrader

Given a slice of the order to trade (a child order), this level
decides whether to place market or limit orders and at what
price level(s).

The smart order router

Given a limit or market order, which venue should this order be
sent to?

In this lecture, we are concerned with the highest level of the
algorithm: How to slice the order.
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Statement of the problem

Given a model for the evolution of the stock price, we would
like to find an optimal strategy for trading stock, the strategy
that minimizes some cost function over all permissible
strategies.

We will specialize to the case of stock liquidation where the
initial position x0 = X and the final position xT = 0.

A static strategy is one determined in advance of trading.

A dynamic strategy is one that depends on the state of the
market during execution of the order, i.e. on the stock price.

Delta-hedging is an example of a dynamic strategy. VWAP is
an example of a static strategy.

It will turn out, surprisingly, that in many models, a statically
optimal strategy is also dynamically optimal.
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An observation from Predoiu, Shaikhet and Shreve

Suppose the cost associated with a strategy depends on the stock
price only through the term∫ T

0
St dxt .

with St a martingale. Integration by parts gives

E
[∫ T

0
St dxt

]
= E

[
ST xT − S0 x0 −

∫ T

0
xt dSt

]
= −S0 X

which is independent of the trading strategy and we may proceed
as if St = 0.

Quote from [Predoiu, Shaikhet and Shreve]

“...there is no longer a source of randomness in the problem.
Consequently, without loss of generality we may restrict the search
for an optimal strategy to nonrandom functions of time”.
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Corollary

This observation enables us to easily determine whether or not
a statically optimal strategy will be dynamically optimal.

In particular, if the price process is of the form

St = S0 + impact of prior trading + noise,

and if there is no risk term, a statically optimal strategy will be
dynamically optimal.
If there is a risk term independent of the current stock price, a
statically optimal strategy will again be dynamically optimal.

It follows that the statically optimal strategy is dynamically
optimal in the following models:

Almgren and Chriss
Almgren (2005)
Obizhaeva and Wang
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Almgren and Chriss

[Almgren and Chriss] model market impact and slippage as follows.
The stock price St evolves as

dSt = σ dZt

and the price S̃t at which we transact is given by

S̃t = St + η vt

where vt := −ẋt is the rate of trading.

In this model, temporary market impact decays
instantaneously and does not affect the market price St .
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The statically optimal strategy

The statically optimal strategy vs is the one that minimizes the
cost function

C = E
[∫ T

0
S̃t vt dt

]
= E

[∫ T

0
(St + η vt) vt ds

]
= η

∫ T

0
v 2
t dt

again with vt = −ẋt .

The Euler-Lagrange equation is then

∂tvt = −∂t,txt = 0

with boundary conditions x0 = X and xT = 0 and the solution is
obviously

vt =
X

T
; xt = X

(
1− t

T

)
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Adding a risk term

[Almgren and Chriss] add a risk term that penalizes the variance of
the trading cost.

Var[C] = Var

[∫ T

0
xt dSt

]
= σ2

∫ T

0
x2
t dt

The expected risk-adjusted cost of trading is then given by

C = η

∫ T

0
ẋ2
t dt + λσ2

∫ T

0
x2
t dt

for some price of risk λ.

Note the analogies to physics and portfolio theory.
The first term looks like kinetic energy and the second term
like potential energy.
The expression looks like the objective in mean-variance
portfolio optimization.
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The Euler-Lagrange equation becomes

ẍ − κ2 x = 0

with

κ2 =
λσ2

η

The solution is a linear combination of terms of the form e±κt that
satisfies the boundary conditions x0 = X , xT = 0. The solution is
then

x(t) = X
sinhκ(T − t)

sinhκT

Once again, the statically optimal solution is dynamically optimal.
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What happens if we change the risk term?

Suppose we penalize average VaR instead of variance. This choice
of risk term has the particular benefit of being linear in the position
size. The expected risk-adjusted cost of trading is then given by

C = η

∫ T

0
ẋ2
t dt + λσ

∫ T

0
xt dt

for some price of risk λ.

The Euler-Lagrange equation becomes

ẍ − A = 0

with

A =
λσ

2 η
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The solution is a quadratic of the form A t2/2 + B t + C that
satisfies the boundary conditions x0 = X , xT = 0. The solution is
then

x(t) =

(
X − A T

2
t

) (
1− t

T

)
(1)

In contrast to the previous case where the cost function is
monotonic decreasing in the trading rate and the optimal choice of
liquidation time is ∞, in this case, we can compute an optimal
liquidation time. When T is optimal, we have

∂C

∂T
∝ ẋT + A xT = 0

from which we deduce that ẋT = 0.
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Substituting into (1) and solving for the optimal time T ? gives

T ? =

√
2 X

A

With this optimal choice T = T ?, the optimal strategy becomes

x(t) = X
(

1− t

T

)2

u(t) = −ẋ(t) = 2 X
(

1− t

T

)
One can verify that the static strategy is dynamically optimal,
independent of the stock price.
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ABM vs GBM

One of the reasons that the statically optimal strategy is
dynamically optimal is that the stock price process is assumed
to be arithmetic Brownian motion (ABM).

If for example geometric Brownian motion (GBM) is assumed,
the optimal strategy depends on the stock price.

How dependent is the optimal strategy on dynamical
assumptions for the underlying stock price process?
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Forsyth et al.

[Forsyth et al.] solve the HJB equation numerically under
geometric Brownian motion with variance as the risk term so
that the (random) cost is given by

C = η

∫ T

0
ẋ2
t dt + λσ2

∫ T

0
S2

t x2
t dt

The efficient frontier is found to be virtually identical to the
frontier computed in the arithmetic Brownian motion case.

The problem of finding the optimal strategy is ill-posed; many
strategies lead to almost the same value of the cost function.

It is optimal to trade faster when the stock price is high so as
to reduce variance. The optimal strategy is
aggressive-in-the-money when selling stock and
passive-in-the-money when buying stock.
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Gatheral and Schied

[Gatheral and Schied] take time-averaged VaR as the risk term so
that

C (T ,X , S0) = inf
v∈G

E
[ ∫ T

0
v 2
t dt + λ

∫ T

0
St xt dt

]
, (2)

where G is the set of admissible strategies.

C (T ,X ,S) should then satisfy the following
Hamilton-Jacobi-Bellman PDE:

CT =
1

2
σ2 S2 CSS + λ S X + inf

v∈R
(v 2 − v CX ). (3)

with initial condition

lim
T↓0

C (T ,X ,S) =

{
0 if X = 0,

+∞ if X 6= 0.
(4)
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The optimal strategy under GBM

Solving the HJB equation explicitly gives

Theorem

The unique optimal trade execution strategy attaining the infimum
in (2) is

x∗t =
(T − t

T

)[
X − λT

4

∫ t

0
Su du

]
(5)

Moreover, the value of the minimization problem in (2) is given by

C = E
[ ∫ T

0

{
(ẋ∗t )2 + λx∗t St

}
dt
]

=
X 2

T
+

1

2
λT X S0 −

λ2

8σ6
S2

0

(
eσ

2 T − 1− σ2 T − 1

2
σ4 T 2

)
.
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The optimal strategy under ABM

If we assume ABM, St = S0 (1 + σWt), instead of GBM, the risk
term becomes

λ̂ S0

∫ T

0
xt dt. (6)

As we already showed, the optimal strategy under ABM is just the
static version of the dynamic strategy (5) obtained by replacing St

with its expectation E[St ] = S0, a strategy qualitatively similar to
the Almgren-Chriss optimal strategy.
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Comparing optimal strategies under ABM and GBM

As before, define the characteristic timescale

T ? =

√
4 X

λ S0

and choose the liquidation time T to be T ?.

With T = T ?, the optimal trading rate under ABM becomes

vA(t) =
xt

T − t
+

X

T 2
(T − t) =

2 X

T

(
1− t

T

)
(7)

and the optimal trading rate under GBM becomes

vG (t) =
xt

T − t
+

X

T 2

St

S0
(T − t). (8)
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Comparing optimal strategies under ABM and GBM

In the following slide:

The upper plots show rising and falling stock price scenarios
respectively; the trading period is 20 days and daily volatility
is 4%.

The lower plots show the corresponding optimal trading rates
from (7) and (8); the optimal trading rate under ABM is in
orange and the optimal trading rate under GBM is in blue.

Even with such extreme parameters and correspondingly
extreme changes in stock price, the differences in optimal
trading rates are minimal.
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Remarks

For reasonable values of σ2 T � 1, there is almost no
difference in expected costs and risks between the optimal
strategies under ABM and GBM assumptions.

Intuitively, although the optimal strategy is stock
price-dependent under GBM assumptions but not under ABM
assumptions, when σ2 T � 1, the difference in optimal
frontiers is tiny because the stock-price St cannot diffuse very
far away from S0 in the short time available.

Equivalently, as in the plots, there can only be a small
difference in optimal trading rates under the two assumptions.
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Practical comments

It’s not clear what the price of risk should be.

More often that not, a trader wishes to complete an execution
before some final time and otherwise just wants to minimize
expected execution cost.

In Almgren-Chriss style models, the optimal strategy is just
VWAP (trading at constant rate).

From now on, we will drop the risk term and the dynamics we
will consider will ensure that the statically optimal solution is
dynamically optimal.
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Obizhaeva and Wang 2005

In the [Obizhaeva and Wang] model,

St = S0 + η

∫ t

0
us e−ρ (t−s) ds +

∫ t

0
σ dZs (9)

with ut = −ẋt .

Market impact is linear in the rate of trading but in contrast
to Almgren and Chriss, market impact decays exponentially
with some non-zero half-life.

The expected cost of trading becomes:

C = η

∫ T

0
ut dt

∫ t

0
us exp {−ρ (t − s)} ds
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Obizhaeva Wang order book process

Order density f(x)f(Dt) f(Dt+)

Et+ −Et

0 Dt Dt+

Et

Price level

When a trade of size ξ is placed at time t,

Et 7→ Et+ = Et + ξ

Dt = η Et 7→ Dt+ = η Et+ = η (Et + ξ)
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When the trading policy is statically optimal, the Euler-Lagrange
equation applies:

∂

∂t

δC
δut

= 0

where ut = ẋt . Functionally differentiating C with respect to ut

gives

δC
δut

=

∫ t

0
us e−ρ (t−s) ds +

∫ T

t
us e−ρ (s−t) ds = A (10)

for some constant A. Equation (10) may be rewritten as∫ T

0
us e−ρ |t−s| ds = A

which is a Fredholm integral equation of the first kind (see
[Gatheral, Schied and Slynko]).
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Now substitute
us = δ(s) + ρ+ δ(s − T )

into (10) to obtain

δC
δut

= e−ρ t +
(
1− e−ρ t

)
= 1

The optimal strategy consists of a block trade at time t = 0,
continuous trading at the rate ρ over the interval (0,T ) and
another block trade at time t = T .
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Consider the volume impact process Et . The initial block-trade
causes

0 = E0 7→ E0+ = 1

According to the assumptions of the model, the volume impact
process reverts exponentially so

Et = E0+ e−ρ t + ρ

∫ t

0
e−ρ (t−s) ds = 1

i.e. the volume impact process is constant when the trading
strategy is optimal.
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The model of Alfonsi, Fruth and Schied

[Alfonsi, Fruth and Schied] consider the following (AS) model of
the order book:

There is a continuous (in general nonlinear) density of orders
f (x) above some martingale ask price At . The cumulative
density of orders up to price level x is given by

F (x) :=

∫ x

0
f (y) dy

Executions eat into the order book (i.e. executions are with
market orders).

A purchase of ξ shares at time t causes the ask price to
increase from At + Dt to At + Dt+ with

ξ =

∫ Dt+

Dt

f (x) dx = F (Dt+)− F (Dt)
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Schematic of the model

Order density f(x)

f(Dt)

f(Dt+)

Et+ −Et

0 Dt Dt+

Et

Price level

When a trade of size ξ is placed at time t,

Et 7→ Et+ = Et + ξ

Dt = F−1(Et) 7→ Dt+ = F−1(Et+) = F−1(Et + ξ)
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Optimal liquidation strategy in the AS model

The cost of trade execution in the AS model is given by:

C =

∫ T

0
vt F−1(Et) dt +

∑
t≤T

[H(Et+)− H(Et)] (11)

where

Et =

∫ t

0
us e−ρ (t−s) ds

is the volume impact process and

H(x) =

∫ x

0
F−1(x) dx

gives the cost of executing an instantaneous block trade of size x .
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Consider the ansatz ut = ξ0 δ(t) + ξ0 ρ+ ξT δ(T − t). For
t ∈ (0,T ), we have Et = E0 = ξ0, a constant. With this choice of
ut , we would have

C(X ) = F−1(ξ0)

∫ T

0
vt dt + [H(E0+)− H(E0)] + [H(ET )− H(ET−)]

= F−1(ξ0) ξ0 ρT + H(ξ0) + [H(ξ0 + ξT )− H(ξ0)]

= F−1(ξ0) ξ0 ρT + H(X − ρ ξ0 T )

Differentiating this last expression gives us the condition satisfied
by the optimal choice of ξ0:

F−1(X − ρ ξ0 T ) = F−1(ξ0) + F−1′(ξ0) ξ0

or equivalently

F−1(ξ0 + ξT ) = F−1(ξ0) + F−1′(ξ0) ξ0
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Functionally differentiating C with respect to ut gives

δC
δut

= F−1(Et) +

∫ T

t
us F−1′ (Es)

δEs

δut
ds

= F−1(Et) +

∫ T

t
us F−1′ (Es) e−ρ (s−t) ds (12)

The first term in (12) represents the marginal cost of new quantity
at time t and the second term represents the marginal extra cost
of future trading.

With our ansatz, and a careful limiting argument, we obtain

δC
δut

= F−1(ξ0) + ξ0 F−1′ (ξ0)
[
1− e−ρ (T−t)

]
+e−ρ (T−t)

[
F−1(ξT + ξ0)− F−1(ξ0)

]
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Imposing our earlier condition on ξT gives

δC
δut

= F−1(ξ0) + ξ0 F−1′ (ξ0)
[
1− e−ρ (T−t)

]
+e−ρ (T−t) ξ0 F−1′ (ξ0)

= F−1(ξ0) + ξ0 F−1′ (ξ0)

which is constant, demonstrating (static) optimality.

Example

With F−1(x) =
√

x ,√
ξ0 + ξT = F−1(ξ0+ξT ) = F−1(ξ0)+F−1′(ξ0) ξ0 =

√
ξ0+

1

2

√
ξ0

which has the solution ξT = 5
4 ξ0.
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Generalization

Alexander Weiss [Weiss] and then Predoiu, Shaikhet and Shreve
[Predoiu, Shaikhet and Shreve] have shown that the bucket-shaped
strategy is optimal under more general conditions than exponential
resiliency. Specifically, if resiliency is a function of Et (or
equivalently Dt) only, the optimal strategy has a block trades at
inception and completion and continuous trading at a constant
rate in-between.
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Optimality and price manipulation

For all of the models considered so far, there was an optimal
strategy.

The optimal strategy always involved trades of the same sign.
So no sells in a buy program, no buys in a sell program.

It turns out (see [Gatheral]) that we can write down models
for which price manipulation is possible.

In such cases, a round-trip trade can generate cash on
average.

You would want to repeat such a trade over and over.
There would be no optimal strategy.
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A particular choice of dynamics

Following [Gatheral], suppose that the stock price St at time t
is given by

St = S0 +

∫ t

0
f (ẋs) G (t − s) ds +

∫ t

0
σ dZs (13)

where ẋs is our rate of trading in dollars at time s < t, f (ẋs)
represents the impact of trading at time s and G (t − s) is a
decay factor.

St follows an arithmetic random walk with a drift that
depends on the accumulated impacts of previous trades.

The cumulative impact of (others’) trading is implicitly in S0

and the noise term.
Drift is ignored.

Drift is a lower order effect.
We are averaging buys and sells.
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Dynamics continued

We refer to f (·) as the instantaneous market impact function
and to G (·) as the decay kernel.

(13) is a generalization of processes due to Almgren,
Bouchaud, and Obizhaeva and Wang.

(13) corresponds to the “autogressive model” of Bouchaud et
al. rather than the state-dependent “colored print”
formulation.
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Cost of trading

Denote the number of shares outstanding at time t by xt .
Then from (13), neglecting slippage, the cost C [Π] associated
with a given trading strategy Π = {xt} is given by

C [Π] =

∫ T

0
ẋt dt

∫ t

0
f (ẋs) G (t − s) ds (14)

The dxt = ẋt dt shares liquidated at time t are traded on
average at a price

St = S0 +

∫ t

0
f (ẋs) G (t − s) ds

which reflects the residual cumulative impact of all prior
trading.
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The principle of No Price Manipulation

A trading strategy Π = {xt} is a round-trip trade if∫ T

0
ẋt dt = 0

We define a price manipulation to be a round-trip trade Π whose
expected cost C [Π] is negative.

The principle of no price manipulation

Price manipulation is not possible.
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Permanent impact

Suppose we trade into a position at the rate +v and out at the
same −v . If market impact is permanent, without loss of
generality, G (·) = 1 and the cost of trading becomes

C [Π] = v f (v)

{∫ T/2

0
dt

∫ t

0
ds −

∫ T

T/2
dt

∫ T/2

0
ds

}

+v f (−v)

∫ T

T/2
dt

∫ t

T/2
ds

= v
T 2

8
{−f (−v)− f (v)}

If f (v) 6= −f (−v), price manipulation is possible.

No price manipulation thus imposes that if market impact is
permanent, f (v) = −f (−v).

We henceforth assume that f (v) = −f (−v).
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A specific strategy

Consider a strategy where shares are accumulated at the (positive)
constant rate v1 and then liquidated again at the (positive)
constant rate v2. According to equation (14), the cost of this
strategy is given by C11 + C22 − C12 with

C11 = v1 f (v1)

∫ θT

0
dt

∫ t

0
G (t − s) ds

C22 = v2 f (v2)

∫ T

θT
dt

∫ t

θT
G (t − s) ds

C12 = v2 f (v1)

∫ T

θT
dt

∫ θT

0
G (t − s) ds (15)

where θ is such that v1 θT − v2 (T − θT ) = 0 so

θ =
v2

v1 + v2



Introduction Almgren Chriss Alfonsi Schied Price manipulation Linear transient impact Square-root model Conclusion

Special case: Trade in and out at the same rate

One might ask what happens if we trade into, then out of a
position at the same rate v . If G (·) is strictly decreasing,

C [Π] = v f (v)

{∫ T/2

0

dt

∫ t

0

G (t − s) ds +

∫ T

T/2

dt

∫ t

T/2

G (t − s) ds

−
∫ T

T/2

dt

∫ T/2

0

G (t − s) ds

}

= v f (v)

{∫ T/2

0

dt

∫ t

0

[G (t − s)− G (t + T/2− s)] ds

+

∫ T

T/2

dt

∫ t

T/2

[G (t − s)− G (T − s)] ds

}
> 0

We conclude that if there is arbitrage, it must involve trading
in and out at different rates.
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Exponential decay

Suppose that the decay kernel has the form

G (τ) = e−ρ τ

Then, explicit computation of all the integrals in (15) gives

C11 = v1 f (v1)
1

ρ2

{
e−ρ θT − 1 + ρ θT

}
C12 = v2 f (v1)

1

ρ2

{
1 + e−ρT − e−ρ θT − e−ρ (1−θ) T

}
C22 = v2 f (v2)

1

ρ2

{
e−ρ (1−θ) T − 1 + ρ (1− θ) T

}
(16)

We see in particular that the no-arbitrage principle forces a
relationship between the instantaneous impact function f (·) and
the decay kernel G (·).
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Exponential decay

After making the substitution θ = v2/(v1 + v2) and imposing the
principle of no price manipulation, we obtain

v1 f (v1)

[
e
− v2 ρ

v1+v2 − 1 +
v2 ρ

v1 + v2

]
+v2 f (v2)

[
e
− v1 ρ

v1+v2 − 1 +
v1 ρ

v1 + v2

]
−v2 f (v1)

[
1 + e−ρ − e

− v1 ρ

v1+v2 − e
− v2 ρ

v1+v2

]
≥ 0 (17)

where, without loss of generality, we have set T = 1. We note that
the first two terms are always positive so price manipulation is only
possible if the third term (C12) dominates the others.
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Example: f (v) =
√

v

Let v1 = 0.2, v2 = 1, ρ = 1. Then the cost of liquidation is given
by

C = C11 + C22 − C12 = −0.001705 < 0

Since ρ really represents the product ρT , we see that for any
choice of ρ, we can find a combination {v1, v2,T} such that a
round trip with no net purchase or sale of stock is profitable. We
conclude that if market impact decays exponentially, no arbitrage
excludes a square root instantaneous impact function.

Can we generalize this?
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Expansion in ρ

Expanding expression (17) in powers of ρ, we obtain

v1 v2 [v1 f (v2)− v2 f (v1)] ρ2

2(v1 + v2)2
+ O

(
ρ3
)
≥ 0

We see that arbitrage is always possible for small ρ unless f (v) is
linear in v .
Taking the limit ρ→ 0+, we obtain

Corollary

Non-linear permanent market impact is inconsistent with the
principle of no price manipulation.
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Exponential decay of market impact and arbitrage

Lemma

If temporary market impact decays exponentially, price
manipulation is possible unless f (v) ∝ v.

Empirically, market impact is concave in v for small v .

Also, market impact must be convex for very large v

Imagine submitting a sell order for 1 million shares when there
are bids for only 100,000.

We conclude that the principle of no price manipulation
excludes exponential decay of market impact for any
reasonable instantaneous market impact function f (·).
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Linear transient market impact

Consider again the price process

St = S0 +

∫ t

0
f (vs) G (t − s) ds + noise

In [Gatheral, Schied and Slynko], this model is on the one hand
extended to explicitly include discrete optimal strategies and on the
other hand restricted to the case of linear market impact. When
the admissible strategy X is used, the price St is given by

St = S0
t +

∫
{s<t}

G (t − s) dXs , (18)

and the expected cost of liquidation is given by

C(X ) :=
1

2

∫ ∫
G (|t − s|) dXs dXt . (19)
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Condition for no price manipulation

Definition (Huberman and Stanzl)

A round trip is an admissible strategy with X0 = 0. A price
manipulation strategy is a round trip with strictly negative
expected costs.

Proposition (Bochner)

C(X ) ≥ 0 for all admissible strategies X if and only if G (| · |) can
be represented as the Fourier transform of a positive finite Borel
measure µ on R, i.e.,

G (|x |) =

∫
e ixz µ(dz).



Introduction Almgren Chriss Alfonsi Schied Price manipulation Linear transient impact Square-root model Conclusion

First order condition

Theorem

Suppose that G is positive definite. Then X ∗ minimizes C(·) if and
only if there is a constant λ such that X ∗ solves the generalized
Fredholm integral equation∫

G (|t − s|) dX ∗s = λ for all t ∈ T. (20)

In this case, C(X ∗) = 1
2 λ x. In particular, λ must be nonzero as

soon as G is strictly positive definite and x 6= 0.
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Transaction-triggered price manipulation

Definition (Alfonsi, Schied, Slynko (2009))

A market impact model admits transaction-triggered price
manipulation if the expected costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.

As discussed in [Alfonsi, Schied and Slynko], transaction-triggered
price manipulation can be regarded as an additional model
irregularity that should be excluded. Transaction-triggered price
manipulation can exist in models that do not admit standard price
manipulation in the sense of Huberman and Stanzl definition.
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Condition for no transaction-triggered price manipulation

Theorem

Suppose that the decay kernel G (·) is convex, satisfies∫ 1
0 G (t) dt <∞ and that the set of admissible strategies is

nonempty. Then there exists a unique admissible optimal strategy
X ∗. Moreover, X ∗t is a monotone function of t, and so there is no
transaction-triggered price manipulation.

Remark

If G is not convex in a neighborhood of zero, there is
transaction-triggered price manipulation.
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An instructive example

We solve a discretized version of the Fredholm equation (with 512
time points) for two similar decay kernels:

G1(τ) =
1

(1 + t)2
; G2(τ) =

1

1 + t2

G1(·) is convex, but G2(·) is concave near τ = 0 so there should be
a unique optimal strategy with G1(·) as a choice of kernel but
there should be transaction-triggered price manipulation with G2(·)
as the choice of decay kernel.
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Schematic of numerical solutions of Fredholm equation

G1(τ) = 1
(1+t)2 G2(τ) = 1

1+t2
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2 ´ 107

In the left hand figure, we observe block trades at t = 0 and t = 1
with continuous (nonconstant) trading in (0, 1). In the right hand
figure, we see numerical evidence that the optimal strategy does
not exist.
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Now we give some examples of the optimal strategy under linear
transient market impact with choices of kernel that preclude
transaction-triggered price manipulation.
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Example I: Linear market impact with exponential decay

G (τ) = e−ρ τ and the optimal strategy u(s) solves∫ T

0
u(s)e−ρ |t−s| ds = const.

We already derived the solution which is

u(s) = A {δ(t) + ρ+ δ(T − t)}

The normalizing factor A is given by∫ T

0
u(t) dt = X = A (2 + ρT )

The optimal strategy consists of block trades at t = 0 and t = T
and continuous trading at the constant rate ρ between these two
times.
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Schematic of optimal strategy

The optimal strategy with ρ = 0.1 and T = 1

0.0 0.2 0.4 0.6 0.8 1.0

Time s

u(
s)
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Example II: Linear market impact with power-law decay

G (τ) = τ−γ and the optimal strategy u(s) solves∫ T

0

u(s)

|t − s|γ
ds = const.

The solution is

u(s) =
A

[s (T − s)](1−γ)/2

The normalizing factor A is given by

∫ T

0
u(t) dt = X = A

√
π

(
T

2

)γ Γ
(

1+γ
2

)
Γ
(
1 + γ

2

)
The optimal strategy is absolutely continuous with no block trades.
However, it is singular at t = 0 and t = T .
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Schematic of optimal strategy

The red line is a plot of the optimal strategy with T = 1 and
γ = 1/2.
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Example III: Linear market impact with linear decay

G (τ) = (1− ρ τ)+ and the optimal strategy u(s) solves∫ T

0
u(s) (1− ρ |t − s|)+ ds = const.

Let N := bρT c, the largest integer less than or equal to ρT . Then

u(s) = A
N∑

i=0

(
1− i

N + 1

) {
δ

(
s − i

ρ

)
+ δ

(
T − s − i

ρ

)}
The normalizing factor A is given by∫ T

0
u(t) dt = X = A

N∑
i=0

2

(
1− i

N + 1

)
= A (2 + N)

The optimal strategy consists only of block trades with no trading
between blocks.
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Schematic of optimal strategy

Positions and relative sizes of the block trades in the optimal
strategy with ρ = 1 and T = 5.2 (so N = bρT c = 5).
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Time s
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Nonlinear transient market impact

We know that the reaction of market price to quantity is in
general nonlinear.

Concave for small quantity and convex for large quantity.

We also know that the market price reverts after completion
of a meta-order (using VWAP say).

What is the optimal strategy under nonlinear transient market
impact?
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The square-root formula for market impact

For many years, traders have used the simple
sigma-root-liquidity model described for example by Grinold
and Kahn in 1994.

Software incorporating this model includes:

Salomon Brothers, StockFacts Pro since around 1991
Barra, Market Impact Model since around 1998
Bloomberg, TCA function since 2005

The model is always of the rough form

∆P = Spread cost + ασ

√
Q

V

where σ is daily volatility, V is daily volume, Q is the number
of shares to be traded and α is a constant pre-factor of order
one.
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Empirical question

So traders and trading software have been using the square-root
formula to provide a pre-trade estimate of market impact for a long
time.

Empirical question

Is the square-root formula empirically verified?
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Impact of proprietary metaorders (from Tóth et al.)

Figure 1: Log-log plot of the volatility-adjusted price impact vs the ratio
Q/V
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Notes on Figure 1

In Figure 1 which is taken from [Tóth et al.], we see the
impact of metaorders for CFM1 proprietary trades on futures
markets, in the period June 2007 to December 2010.

Impact is measured as the average execution shortfall of a
meta-order of size Q.
The sample studied contained nearly 500,000 trades.

We see that the square-root market impact formula is verified
empirically for meta-orders with a range of sizes spanning two
to three orders of magnitude!

1Capital Fund Management (CFM) is a large Paris-based hedge fund.
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An explanation for the square-root formula

In [Tóth et al.], the authors present an argument which says
that if latent supply and demand is linear in price over some
reasonable range of prices, market impact should be
square-root.

The condition for linearity of latent supply and demand over a
range of prices is simply that submitters of buy and sell
meta-orders should be insensitive to price over this range.

We need also to assume that high frequency traders have no
net effect on the latent supply and demand schedule.

It would then seem reasonable to suppose that latent supply
and demand should be linear over a range of prices ∼ σ

√
T

where T is the average life of a meta-order.
A distribution of meta-order durations would give rise to a
concave latent supply/demand function and a market impact
function with an exponent greater than 1

2 as is indeed observed
empirically.
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Some implications of the square-root formula

The square-root formula refers only to the size of the trade
relative to daily volume.

It does not refer to for example:

The rate of trading
How the trade is executed
The capitalization of the stock

Surely impact must be higher if trading is very aggressive?

The database of trades only contains sensible trades with
reasonable volume fractions.
Were we to look at very aggressive trades, we would indeed
find that the square-root formula breaks down.



Introduction Almgren Chriss Alfonsi Schied Price manipulation Linear transient impact Square-root model Conclusion

A nonlinear transient market impact model

Once again, the price process assumed in [Gatheral] is

St = S0 +

∫ t

0
f (vs) G (t − s) ds + noise (21)

The instantaneous impact of a trade at time s is given by
f (vs) – some function of the rate of trading.

A proportion G (t − s) of this initial impact is still felt at time
t > s.
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The square-root model

Consider the following special case of (21) with f (v) = 3
4σ
√

v/V
and G (τ) = 1/

√
τ :

St = S0 +
3

4
σ

∫ t

0

√
vs

V

ds√
t − s

+ noise (22)

which we will call the square-root process.

It is easy to verify that under the square-root process, the expected
cost of a VWAP execution is given by the square-root formula for
market impact:

C
X

= σ

√
X

V
(23)

Of course, that doesn’t mean that the square-root process is
the true underlying process!
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The optimal strategy under the square-root process

Because f (·) is concave, an optimal strategy does not exist in
this case.

It is possible to drive the expected cost of trading to zero by
increasing the number of slices and decreasing the duration of
each slice.

To be more realistic, f (v) must be convex for large v and in
this case, an optimal strategy does exist that involves trading
in bursts, usually more than two.
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Price path in the square-root model

Figure 2: The expected path of the market price during and after
execution of a VWAP order in the square-root model.
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The optimal strategy does not exist in this model.
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Potential cost savings from optimal scheduling

To estimate potential savings from optimal scheduling,
assume that the square-root process (22) is correct and
consider a one-day order to sell 540,000 shares of IBM.

Daily volatility is assumed to be 2% and daily volume to be 6
million shares.
We consider liquidation starting at 09:45 and ending at 15:45
with child orders lasting 15 minutes.

Because we are not confident in the square-root model for
high volume fractions, we constrain volume fraction to be no
greater than 25%.

We compare the costs of VWAP, a two-slice bucket-like
strategy and a quasi-optimal strategy that consists of seven
roughly equal slices.

The quasi-optimal strategy consists of bursts of trading
separated by periods of non-trading.
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Stock trading schedules
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Comparison of results

In the square-root model (22), the cost of a VWAP execution is
given exactly by the square-root formula:

σ

√
Q

V
= 0.02×

√
540

6000
= 0.02× 0.3 = 60 bp

Table 1: Cost comparison

Strategy Cost Saving

VWAP 60.0 bp
Bucket-like 49.6 bp 17%
Quasi-optimal 40.8 bp 32%
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Summary I

The optimal trading strategy depends on the model.

For Almgren-Chriss style models, if the price of risk is zero, the
minimal cost strategy is VWAP.
In Alfonsi-Schied style models with resiliency that depends only
on the current spread, the minimal cost strategy is to trade a
block at inception, a block at completion and at a constant
rate in between.
More generally, if market impact is transient, the optimal
strategy involves bursts of trading; VWAP is never optimal.

In most conventional models, the optimal liquidation strategy
is independent of the stock price.

However, for each such model, it is straightforward to specify a
similar model in which the optimal strategy does depend on
the stock price.
With reasonable parameters and timescales, the optimal
strategy is close to the static one.
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Summary II

In some models, price manipulation is possible and there is no
optimal strategy.

It turns out that we also need to exclude transaction-triggered
price manipulation.

We presented example of models for which price manipulation
is possible.
In the case of linear transient impact, we provided conditions
under which transaction-triggered price manipulation is
precluded.

Empirically, the simple square-root model of market impact
turns out to be a remarkably accurate description for
reasonably sized meta-orders.

Assuming square-root dynamics consistent with this model, we
showed that large cost savings are possible by optimizing the
scheduling strategy.
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