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Roger Lee's Moment Formula

@ [11] shows that implied variance is bounded above by a
function linear in the log-strike k = log(K/F) as |k| — oc.

e The maximum slope of total implied variance
w(k, T) = ozBs(k7 T)Tis 2.
@ He shows how to relate the gradients of the wings of the
upper bound of the implied variance skew to the maximal
finite moments of the underlying process.

@ Lee's derivation assumes only the existence of a martingale
measure: it makes no assumptions on the distribution of
underlying returns. His result is completely
model-independent.
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Roger Lee's Lemma 3.1

There exists k* > 0 such that for all k > k*,

k




Roger Lee's Lemma 3.1

We only need to show that
Cas <k,055(k) ﬁ) < Cas (k, V2 \k]) whenever k > k*.
On the LHS, we have

lim Cgs (k, ogs(k) ﬁ) ~0
and on the RHS, we have
lim Cgs (k, V2 yk\) = lim F {N(dl) . N(dg)}
= lim F {N(O) e N(—\/2|k])} -

k—o00

O NI
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Slope of left wing

Let g* := sup{q ES7Y < oo} and

i ST T
- k——o0 ’k‘
Then g* € [0, 2],
RHCEE S
T 2\VF 2

and inverting this, we obtain * = g(g*) with

g(x)=2-4 [\/X2+X7X}
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Slope of right wing

Similarly, let p* := sup {p : }ESEP < oo} and

2 (k, T)T
a* = Iimsupiass( 1)
k——4o00 ‘k|

Then a* € [0, 2],

35

and as for the left wing, it follows that a* = g(p*).
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Implications of the moment formula

@ Implied variance is linear in k as k — oo for stochastic
volatility models.

@ So, if we want a parameterization of the implied variance
surface consistent with stochastic volatility, it needs to be
linear in the wings!

e and it needs to be curved in the middle - many conventional
parameterizations of the volatility surface are quadratic for
example.
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Benaim and Friz

e With F(x) the CDF, Benaim and Friz go on to show that
Roger Lee's upper bound (limsup) may be replaced by a limit
in most practical cases.

@ Then we may write for the right tail

o 2 _
BS(k;(T)TNg<—1—|mg[1kF(k)]> as k — oo (1)

and for the left tail

ops(—k, T T _ g <— log F(—k)

; . >ask—>oo (2)

@ By substituting the tail-behavior of F into equations (1) and
(2), we can deduce the full tail behavior of the smile, not just
Roger Lee's upper bound.
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History of SVI

@ SVI was originally devised at Merrill Lynch in 1999 and
subsequently publicly disseminated in [4].

@ SVI has two key properties that have led to its subsequent
popularity with practitioners:

e For a fixed time to expiry t, the implied Black-Scholes
variance 034 (k, t) is linear in the log-strike k as |k| — oo
consistent with Roger Lee's moment formula [11].

e It is relatively easy to fit listed option prices whilst ensuring no
calendar spread arbitrage.

@ The consistency of the SVI parameterization with arbitrage
bounds for extreme strikes has also led to its use as an
extrapolation formula [9].

@ As shown in [6], the SVI parameterization is not arbitrary in
the sense that the large-maturity limit of the Heston implied
volatility smile is exactly SVI.
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Previous work

e Calibration of SVI to given implied volatility data (for example
[12]).

@ [2] showed how to parameterize the volatility surface so as to
preclude dynamic arbitrage.

@ Arbitrage-free interpolation of implied volatilities by [1], 3],
[8], [10].

@ Prior work has not successfully attempted to eliminate static
arbitrage.

o Efforts to find simple closed-form arbitrage-free
parameterizations of the implied volatility surface are widely
considered to be futile.
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Notation

e 6 6 o o

Given a stock price process (St),»q with natural filtration
(Ft) ¢, the forward price process (Ft),~q is Fr := E (¢ Fo).

For any k € R and t > 0, Cgs(k,0?t) denotes the
Black-Scholes price of a European Call option on S with strike
Frek, maturity t and volatility o > 0.

ops(k, t) denotes Black-Scholes implied volatility.
Total implied variance is w(k, t) = o34(k, t)t.

The implied variance v(k, t) = o34(k, t) = w(k,t)/t.
The map (k, t) — w(k, t) is the volatility surface.

For any fixed expiry t > 0, the function k — w(k,t)
represents a slice.
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The raw SVI parameterization

For a given parameter set xg = {a, b,p, m,c}, the raw SVI
parameterization of total implied variance reads:

Raw SVI parameterization

w(k;xr) =a+b {p(k—m)—kw(k—m)z—l—az}

where a€ R, b>0, |[p| <1, meR, o >0, and the obvious
condition a+ bo /1 — p? > 0, which ensures that w(k, xg) >0
for all k € R. This condition ensures that the minimum of the
function w(-, xg) is non-negative.
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An SVI example

Figure 1: With a=0.04, b =0.4, 0 = 0.1, p = —0.4, m = 0, we obtain
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Meaning of raw SVI parameters

Changes in the parameters have the following effects:

@ Increasing a increases the general level of variance, a vertical
translation of the smile;

@ Increasing b increases the slopes of both the put and call
wings, tightening the smile;

@ Increasing p decreases (increases) the slope of the left(right)
wing, a counter-clockwise rotation of the smile;

@ Increasing m translates the smile to the right;

@ Increasing o reduces the at-the-money (ATM) curvature of
the smile.
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The natural SVI parameterization

For a given parameter set xy = {A, u, p,w, }, the natural SVI
parameterization of total implied variance reads:

Natural SVI parameterization

W(k?XN)—A+Z{1+Cp(ku)+\/(4(ku)+p)2+(1pz)}

where w >0, A€R, p€R, |p| <1and(>0.

@ This parameterization is a natural generalization of the time
oo Heston smile explored in [6].
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The SVI Jump-Wings (SVI-JW) parameterization

@ Neither the raw SVI nor the natural SVI parameterizations are
intuitive to traders.

@ There is no reason to expect these parameters to be
particularly stable.

e The SVI-Jump-Wings (SVI-JW) parameterization of the
implied variance v (rather than the implied total variance w)
was inspired by a similar parameterization attributed to Tim
Klassen, then at Goldman Sachs.
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For a given time to expiry t > 0 and a parameter set

XJ = {vt, ¥t, pt, Ct, v¢ } the SVI-JW parameters are defined from
the raw SVI parameters as follows:

SVI-JW parameterization

a—l—b{—pm+\/m2+02}

Vi = t )
by = b (f___m
t —\/]@2 /7m2+0_2 P,

=——=b(1—-p),
Pt \/1V7t ( p)

= b(1 ,
Ct e (1+p)
Vi :<a—i—ba 1—p2>/t

with w; 1= vit.
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Interpretation of SVI-JW parameters

The SVI-JW parameters have the following interpretations:

v+ gives the ATM variance;

1y gives the ATM skew;

p: gives the slope of the left (put) wing;
¢t gives the slope of the right (call) wing;

vy is the minimum implied variance.



Scaling of SVI Jump-Wings parameters with volatility

Note that, as defined here,

_ Oops(k)
Py = ok |,

The choice of volatility skew as the skew measure rather than
variance skew for example, reflects the empirical observation that
volatility is roughly lognormally distributed. Specifically, we show
in Chapter 7 of The Volatility Surface that if the SDE for variance
is of the form:

dv = a(v)dt +n+/vB(v)dZ

we should have

9 1—e_>‘,T
aags(k, T)2 A pn)\/ﬁ;_\/) 1_<)\’T) x B(v)

with X' =X = 2 pnB(v).
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Scaling of SVI Jump-Wings parameters with volatility

Thus 5 B
UL() ~ const.
ok |
independent of volatility implies that
B(v) ~ Vv

and therefore that the variance (volatility) process is lognormal.

This consistency of the SVI-JW parameterization with empirical
volatility dynamics leads to greater parameter stability over time.



Scaling of SVI Jump-Wings parameters with time to
expiration

o If smiles scaled perfectly as 1/,/w; (effectively 1/+/t in
practice), SVI-JW parameters would be constant, independent
of the slice t.

e This makes it easy to extrapolate the SVI surface to
expirations beyond the longest expiration in the data set.

@ Since both scaling features are roughly consistent with
empirical observation, we expect (and see) greater parameter
stability over time.

o Traders can keep parameters in their heads.
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Inversion of SVI Jump-Wings parameters

w,
b = \/;(Ct‘FPt)
Pt\/Wt
1_
P b

Define a := o/m. Then

Bi=p— Ye/we  sign(a)

b V14 a?
Solving this equation gives
) 1
a=sign(f)/ = —1

ﬁ2
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SVI-JW inversion continued

We now note that

e=7)t =m {—p—l—sign(a)@—aﬂ}

b

from which we can deduce m. Finally

g = am

= Vet—bor/1— p?

@ Any one of the three versions of the SVI parameterization can
be easily transformed into any of the others.
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Elimination of calendar spread arbitrage

If dividends are proportional to the stock price, the volatility
surface w is free of calendar spread arbitrage if and only if

Orw(k,t) >0, forallk €R andt > 0.

@ Thus there is no calendar spread arbitrage if there are no
crossed lines on a total variance plot.
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SVI slices may cross at no more than four points
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Condition for no calendar spread arbitrage

Two raw SVI slices admit no calendar spread arbitrage if a certain
quartic polynomial has no real root.
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Ferrari Cardano

The idea is as follows:
@ Two total variance slices cross if

a1+ by {pl(k—m1)+ (k—m1)2+0'%}

= a+b {p2(k—m2)+ (k—m2)2+0§}

@ Rearranging and squaring gives a quartic polynomial equation
of the form

a4k4+a3k3+a2k2—|—a1k—|—a0:0,

where each of the coefficients are lengthy yet explicit
expressions in terms of the raw SVI parameters.
e If this quartic polynomial has no real root, then the slices do
not intersect.
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Butterfly arbitrage

Definition 4

A slice is said to be free of butterfly arbitrage if the corresponding
density is non-negative.

Now introduce the function g : R — R defined by

(-5 - ()

A slice is free of butterfly arbitrage if and only if g(k) > 0 for all
k € R and ) Iirr dy (k) = —o0.
—+00
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Axel Vogt post on Wilmott.com

”

AVt
Senior Member

Posts: 971
Joined: Dec 2001

D Thu Apr 06, 06 08:37 PM

It works for observables and far beyond for extrapolation.
But for a (theoretical) experiment try the following data

=-40998372001772e-1,
b=.13308181151379,
m = .35858898335748,
rho = .30602086142471,
sigma = .41531878803777
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The Vogt smile

Figure 2: Plots of the total variance smile w (left) and the function g
(right), using Axel Vogt's parameters
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Simple SVI

Consider now the following extension of the natural SVI
parameterization:

Simple SVI (SSVI) parameterization

ik 89 = 5 {1+ pptic+ o0k P + 1= 2| )

with 6; > 0 for t > 0, and where ¢ is a smooth function from
(0,00) to (0,00) such that the limit lim;—o 0+ (0;) exists in R.
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Interpretation of SSVI

@ This representation amounts to considering the volatility
surface in terms of ATM variance time, instead of standard
calendar time.

e The ATM total variance is 6; = 034(0, t) t and the ATM
volatility skew is given by

akW(k (9,:) p\/> ( )

1
0 k,t =
kUBS( ) )‘k:o \/W —o 2\/*

@ The smile is symmetric around at-the-money if and only if
p =0, a well-known property of stochastic volatility models.
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Conditions on SSVI for no calendar spread arbitrage

Theorem 6

The surface (3) is free of calendar spread arbitrage if
Q@ 0:0; >0, forallt >0;
Q@ 9 (0p(0)) >0, for all § > 0;
@ 0pp(0) <O, forall 6 > 0.

e Simple SVI (3) is free of calendar spread arbitrage if:

o the skew in total variance terms is monotonically increasing in
trading time and

o the skew in implied variance terms is monotonically decreasing
in trading time.

@ In practice, any reasonable skew term structure that a trader
defines will have these properties.
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|dea of proof

The proof proceeds by computing, for any 6 > 0,

1+ px

Vx24+2px +1
0¢'(0) + (0 +
+30()90(){ x+p +p}

20pw(k,0) = 1+

©(0)

with x := k ¢(6) and noting that

0¢'(0) + »(0)

)

<1
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Are the conditions necessary?

@ The necessity of Condition 1 follows from imposing
@ Jgw(k,0) > 0 (with x = ky(#)) imposes the necessity of
condition 2.

@ That condition 3 is not necessary can be seen by setting p =0
in (4) to give
1 00/ (0) + p(0) X2
V1+x2 e0) VI+x?

which is positive if condition 2 holds whether or not
condition 3 also holds.

20pw(k,0) =1+
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Conditions on SSVI for no butterfly arbitrage

The volatility surface (3) is free of butterfly arbitrage if the
following conditions are satisfied for all 6 > 0:

Q 0p(0) (1+ |p|) < 4
@ 00(0)* (1+ |p]) < 4.

Remark 8

Condition 1 needs to be a strict inequality so that
lim di(k) = —oo and the SVI density integrates to one.

k—~+o0
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Are these conditions necessary?

The volatility surface (3) is free of butterfly arbitrage only if
0p(0) (1 + |p]) <4, forall§>0.

Moreover, if 0p(6) (1 + |p|) = 4, the surface (3) is free of butterfly
arbitrage only if

00(6)* (1 + |o]) < 4.

So the theorem is almost if-and-only-if.
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No butterfly arbitrage in terms of SVI-JW parameters

A volatility smile of the form (3) is free of butterfly arbitrage if

Vvetmax(ps, ) <4, and (p:+ ¢t) max(ps, ) < 8,

hold for all £ > 0.
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The Roger Lee arbitrage bounds

@ The asymptotic behavior of the surface (3) as |k| tends to
infinity is
(1£p)0:

W(k,@t) = 5

©(0:) |k| + O(1), foranyt > 0.

@ Thus the condition 0p(6) (1 + |p|) < 4 of Theorem 7
corresponds to the upper bound of 2 on the asymptotic slope
established by Lee [11].

e Again, Condition 1 of the theorem is necessary.
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No static arbitrage with SSVI

Corollary 5.1

The surface (3) is free of static arbitrage if the following conditions
are satisfied:

Q 0:0: >0, forallt >0

@ 0y(0p(0)) > 0, for all 6 > 0;

Q Jvp(0) <0, for all 6 > 0;

Q 0p(0) (1 + |p|) < 4, for all § > 0;
Q 0p(0)> (1 + |p|) < 4, for all 6 > 0.

@ A large class of simple closed-form arbitrage-free volatility
surfaces!
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A Heston-like surface

Example 10

The function ¢ defined as

1 il

with A > (1 + |p|) /4 satisfies the conditions of Corollary 5.1.

@ This function is consistent with the implied variance skew in
the Heston model as shown in [5] (equation 3.19).
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A power-law surface

Example 11

The choice
n

)= ————
#(0) 67 (1+0)1—
gives a surface that is completely free of static arbitrage provided
that v € (0,1/2] and 1 (1 + |p|) < 2.

@ This function is more consistent with the empirically-observed
term structure of the volatility skew.
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Even more flexibility...

Let the volatility surface (3) satisfy the conditions of Corollary 5.1.
If ay > 0 and Oray > 0, for all t > 0, then the volatility surface
Wo(k,0:) := w(k,0:) + a; is free of static arbitrage.

@ Corollary 5.1 gives us the freedom to match three features of
one smile (level, skew, and curvature say) but only two
features of all the other smiles (level and skew say), subject of
course to the given smiles being themselves arbitrage-free.

@ Theorem 12 may allow us to match an additional feature of
each smile through a;.



SSvI

000000000 0TIW

How to eliminate butterfly arbitrage

@ We have shown how to define a volatility smile that is free of
butterfly arbitrage.

@ This smile is completely defined given three observables.
e The ATM volatility and ATM skew are obvious choices for two
of them.
e The most obvious choice for the third observable in equity
markets would be the asymptotic slope for k negative and in
FX markets and interest rate markets, perhaps the ATM
curvature of the smile might be more appropriate.



SSvI

000000000 0TITK

How to fix butterfly arbitrage

@ Supposing we choose to fix the SVI-JW parameters v, ¢
and p; of a given SVI smile, we may guarantee a smile with
no butterfly arbitrage by choosing the remaining
parameters ¢; and v, according to SSVI as

4pecy

i =p:+2v%;, and V.=v, ——.
e C et @)’

@ That is, given a smile defined in terms of its SVI-JW
parameters, we are guaranteed to be able to eliminate
butterfly arbitrage by changing the call wing ¢; and the
minimum variance v;, both parameters that are hard to
calibrate with available quotes in equity options markets.
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Example: Fixing the Vogt smile

@ The SVI-JW parameters corresponding to the Vogt smile are:

(Vtaqzz)tapta Ct,Vt)
= (0.01742625,—0.1752111,0.6997381,1.316798,0.0116249) .

@ We know then that choosing
(ct, ve) = (0.3493158,0.01548182) must give a smile free of
butterfly arbitrage.

@ There must exist some pair of parameters {c;, v¢} with
¢t € (0.349,1.317) and v; € (0.0116,0.0155) such that the
new smile is free of butterfly arbitrage and is as close as
possible to the original one in some sense.
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Numerical optimization

@ In this particular case, choosing the objective function as the
sum of squared option price differences plus a large penalty for
butterfly arbitrage, we arrive at the following “optimal”
choices of the call wing and minimum variance parameters
that still ensure no butterfly arbitrage:

(ce, V) = (0.8564763,0.0116249) .

@ Note that the optimizer has left v; unchanged but has
decreased the call wing.

@ The resulting smiles and plots of the function g are shown in
Figure 3.
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The Vogt smile fixed

015

010

005

Figure 3: Plots of the total variance smile (left) and the function g
(right). The graphs corresponding to the original Axel Vogt parameters is
solid, to the guaranteed butterfly-arbitrage-free parameters dashed, and
to the “optimal” choice of parameters dotted.



Why extra flexibility may not help

@ The additional flexibility potentially afforded to us through the
parameter a; of Theorem 12 sadly does not help us with the
Vogt smile.

@ For a; to help, we must have a; > 0; it is straightforward to
verify that this translates to the condition v; (1 — p?) < ¥
which is violated in the Vogt case.



Quantifying lines crossing

o Consider two SVI slices with parameters x1 and x» where
th > ty.

e We first compute the points k; (i =1,...,n) with n < 4 at
which the slices cross, sorting them in increasing order. If
n > 0, we define the points k; as

7(/1 = kl — 1,

~ 1

ki = > (ki—1+ ki), if2<i<n,
Kni1 = kn+1.

@ For each of the n+ 1 points %;, we compute the amounts ¢;
by which the slices cross:

¢; = max |0, W(%,)ﬁ) — W(zi7X2) :
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Crossedness

Definition 13

The crossedness of two SVI slices is defined as the maximum of
the ¢ (i=1,...,n). If n =0, the crossedness is null.
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A sample calibration recipe

Calibration recipe

e Given mid implied volatilities oj; = ops(ki, tj), compute mid
option prices using the Black-Scholes formula.

o Fit the square-root SVI surface by minimizing sum of squared
distances between the fitted prices and the mid option prices.
This is now the initial guess.

@ Starting with the square-root SVI initial guess, change SVI
parameters slice-by slice so as to minimize the sum of squared
distances between the fitted prices and the mid option prices
with a big penalty for crossing either the previous slice or the
next slice (as quantified by the crossedness from
Definition 13).
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Interpolation

Lemma 14

Given two SVI smiles w(k, t1) and w(k, t2) with t; < t, where the
two smiles are free of butterfly arbitrage and such that

w(k, ) > w(k, 1) for all k, there exists an interpolation such
that the interpolated volatility surface is free of static arbitrage for
h <t<i.

@ For example;

Ct o C]_
CAR

where for any t € (t1, tp), we define

0, — /0
at:—tziﬁe[o,l].

IRV

G
at) ?27

works.
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A possible choice of extrapolation

@ At time tg = 0, the value of a call option is just the intrinsic
value.

@ Then we can interpolate between ty and t; using the above
algorithm, guaranteeing no static arbitrage.

@ For extrapolation beyond the final slice, first recalibrate the
final slice using the simple SVI form (3).

@ Then fix a monotonic increasing extrapolation of #; and
extrapolate the smile for t > t, according to

W(k> 91‘) = W(ka 0tn) + et - etn’

which is free of static arbitrage if w(k,6;,) is free of butterfly
arbitrage by Theorem 12.



Raw data

Raw option price data looks like this:

> spxData[100:105,]

OPRA_Message_Sequence Date Time Exchange Message_Type Option_Root Expiration_Month_Code
100 157179374 9/15/11 150007.2 C NA SPX F
101 157180023 9/15/11 150007.2 C NA SPX F
102 157180136 9/15/11 150007.2 C NA SPX F
103 157180135 9/15/11 150007.2 C NA SPX F
104 157180220 9/15/11 150007.2 C NA SPX F
105 155910096 9/15/11 145524.8 C NA SPX I

Expiration_Day Expiration_Year Strike_Price Option_Bid_Price Option_Bid_Size Option_Offer_Price
100 22 13 750 457.4 10 461.3
101 22 13 800 416.7 10 420.6
102 22 13 850 377.2 10 381.1
103 22 13 900 338.8 10 342.7
104 22 13 950 301.9 10 305.8
105 17 11 100 1105.9 100 1109.8

Option_Offer_Size Session_Indicator Best_Bid.Offer_.BBO._Indicator BBO_Appendage_Exchange
100 10 NA FALSE NA
101 10 NA FALSE NA
102 10 NA FALSE NA
103 10 NA FALSE NA
104 10 NA FALSE NA
105 150 NA FALSE NA

BBO_Appendage_Quote_Price BBO_Appendage_Quote_Size
100 NA NA
101 NA NA
102 NA NA
103 NA NA
104 NA NA

105 NA NA
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Implied volatility computation for index options

@ We compute all implied volatilities from option price data
o We don't need external estimates of interest rates and
dividends
@ We use put-call parity to get implied forward prices and
discount factors.
e Find the unique forward price and discount factor that
minimize implied forward pricing errors.
@ In this way, we can avoid errors due to non-synchronous
parameter estimates and typically generate very smooth
implied volatility curves.



Calibration
VOOV

Implied volatility output

The resulting implied volatility output looks like this:

> spxOptData[90:110,]

Expiry Texp Strike Bid Ask Fud CallMid
90 2011-09-16 0.002737851 1105 0.6428147 0.6944342 1207.695 102.769180
91 2011-09-16 0.002737851 1110 0.6133797 0.6630673 1207.695 97.769180
92 2011-09-16 0.002737851 1115 0.5839531 0.6316966 1207.695 92.769180
93 2011-09-16 0.002737851 1120 0.5545262 0.6317986 1207.695 87.794027
94 2011-09-16 0.002737851 1125 0.5689019 0.5990741 1207.695 82.818874
95 2011-09-16 0.002737851 1130 0.5374541 0.5662994 1207.695 77.818874
96 2011-09-16 0.002737851 1135 0.5059541 0.5553092 1207.695 72.843722
97 2011-09-16 0.002737851 1140 0.4743855 0.5213325 1207.695 67.843722
98 2011-09-16 0.002737851 1145 0.4427291 0.5039799 1207.695 62.868569
99 2011-09-16 0.002737851 1150 0.4109624 0.4529915 1207.695 57.843722
100 2011-09-16 0.002737851 1155 0.4010179 0.4334988 1207.695 52.893417
101 2011-09-16 0.002737851 1160 0.3839259 0.3979229 1207.695 47.918264
102 2011-09-16 0.002737851 1165 0.3620577 0.4025569 1207.695 43.042501
103 2011-09-16 0.002737851 1170 0.3258372 0.3924144 1207.695 38.141890
104 2011-09-16 0.002737851 1175 0.3237599 0.3443333 1207.695 33.216432
105 2011-09-16 0.002737851 1180 0.2900039 0.3134920 1207.695 28.290974
106 2011-09-16 0.002737851 1185 0.2537705 0.3047703 1207.695 23.514601
107 2011-09-16 0.002737851 1190 0.2556712 0.2698104 1207.695 18.887311
108 2011-09-16 0.002737851 1195 0.2228864 0.2674955 1207.695 14.483648
109 2011-09-16 0.002737851 1200 0.2210335 0.2593233 1207.695 10.651474
110 2011-09-16 0.002737851 1205 0.1989225 0.2471716 1207.695 7.067774
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Total variance plot from fit to each slice independently
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Figure 4: Fitting each slice independently gives rise to calendar spread
arbitrage (crossed lines)
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Square-root SVI calibration
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Figure 5: SPX option quotes as of 3pm on 15-Sep-2011. Red triangles
are bid implied volatilities; blue triangles are offered implied volatilities;
the orange solid line is the Sqrt SVI fit



SVI square-root calibration: December 2011 detail
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Figure 6: SPX Dec-2011 option quotes as of 3pm on 15-Sep-2011. Red
triangles are bid implied volatilities; blue triangles are offered implied
volatilities; the orange solid line is the square-root SVI fit
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SVI square-root calibration: Total variance plot
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Figure 7: Total variance plot for square-root SVI fit: No lines cross!
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JW parameters for square-root fit

vt psit pt ct varmint texp
1 0.05081151 -0.3100192 0.7499526 0.1299141 0.02557869 0.002737851
2 0.11101927 -0.3100192 0.7499526 0.1299141 0.05588749 0.019164956
3 0.09193989 -0.3100192 0.7499526 0.1299141 0.04628287 0.038329911
4 0.08456379 -0.3100192 0.7499526 0.1299141 0.04256971 0.098562628
5 0.08557701 -0.3100192 0.7499526 0.1299141 0.04307977 0.175222450
6 0.08161734 -0.3100192 0.7499526 0.1299141 0.04108646 0.251882272
7 0.08284405 -0.3100192 0.7499526 0.1299141 0.04170399 0.287474333
8 0.07783010 -0.3100192 0.7499526 0.1299141 0.03917995 0.501026694
9 0.07882114 -0.3100192 0.7499526 0.1299141 0.03967884 0.536618754
10 0.07634669 -0.3100192 0.7499526 0.1299141 0.03843320 0.750171116
11 0.07712322 -0.3100192 0.7499526 0.1299141 0.03882410 0.785763176
12 0.07331750 -0.3100192 0.7499526 0.1299141 0.03690829 1.267624914
13 0.07003976 -0.3100192 0.7499526 0.1299141 0.03525827 1.765913758
14 0.06897968 -0.3100192 0.7499526 0.1299141 0.03472461 2.264202601
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Full SVI calibration
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Figure 8: SPX option quotes as of 3pm on 15-Sep-2011. Red triangles
are bid implied volatilities; blue triangles are offered implied volatilities;
the orange solid line is the SVI fit
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Full SVI calibration: March 2012 detail
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Figure 9: SPX Mar-2012 option quotes as of 3pm on 15-Sep-2011. Red
triangles are bid implied volatilities; blue triangles are offered implied
volatilities; the orange solid line is the SVI fit
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Full SVI calibration: Total variance plot
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Figure 10: Total variance plot for full SVI fit: No lines cross!
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Full SVI calibration: Zoomed total variance plot
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Figure 11: Total variance plot for full SVI fit: No lines cross!
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Full SVI calibration: 3D plot
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Figure 12: Fitted SPX volatility surface as of 3pm on 15-Sep-2011
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Full SVI calibration: 3D plot of local variance
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Figure 13: Fitted SPX local variance surface as of 3pm on 15-Sep-2011
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JW parameters for full calibration

vt psit pt ct varmint texp
1 0.04964328 -0.05644814 1.3188159 0.3601864 0.04839323 0.002737851
2 0.11030822 -0.18695177 0.6669708 0.1257191 0.06419691 0.019164956
3 0.09185758 -0.22577697 0.5943167 0.1387680 0.05672638 0.038329911
4 0.08430449 -0.27032405 0.6237999 0.1327778 0.03952931 0.098562628
5 0.08538359 -0.28671259 0.6769629 0.1522872 0.04111123 0.175222450
6 0.08175423 -0.28913126 0.7311452 0.1302903 0.03800972 0.251882272
7 0.08246796 -0.29892633 0.7075543 0.1272634 0.03958896 0.287474333
8 0.07818454 -0.30641514 0.7626481 0.1349955 0.03365778 0.501026694
9 0.07939100 -0.30961650 0.7348491 0.1480980 0.03610965 0.536618754
10 0.07626063 -0.32362553 0.7630535 0.1336569 0.03510533 0.750171116
11 0.07705433 -0.32328474 0.7613835 0.1369960 0.03407266 0.785763176
12 0.07357245 -0.33341215 0.7738590 0.1244284 0.03065953 1.267624914
13 0.07010458 -0.32922668 0.7719227 0.1459205 0.02711859 1.765913758
14 0.06895374 -0.33210301 0.7537292 0.1302102 0.02960947 2.264202601

@ Note that JW parameters are almost independent of texp
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Full SVI calibration: ATM skew

T
15 20

Figure 14: At-the-money volatility skew from the full calibration
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Full SVI calibration: ATM skew
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Figure 15: Log-log plot of ATM skew with regression slope
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Full SVI calibration: ATM skew

——
///0——,“(::’F
__—70°
o &
2 =
7z
/2
7%
//
H
g /
If
S /]
g /
< of Exponent = -0.45
Il
Il Exponent = -1/2
|
o | ol‘
|
|
|
If
If
T T
0.0 05 10 15 20
Expiry

Figure 16: ATM skew again with power-law fits
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Full SVI calibration: Variance swap term structure
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Figure 17: Market variance swaps bids and offers (in blue and red) vs the
log-strip computation (in black)



SVI-SABR

e Consider the (lognormal) SABR formula with § = 1:
k
ogs(k) =af <>

(%

with

fly) = - Jiy : (5)
Iog( vey +2prvy+ —Vy—p)

1-p

@ Compare this with the simpler SVI-SABR formula:

2

o%s(k):oé{1+p2k+\/(;k+p)2+(l—p2)} (6)

which is guaranteed free of butterfly arbitrage if
av(l+p|) < 4and v?(1+|p|) < 4.
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Butterfly arbitrage

@ It is well known that the SABR volatility smile is susceptible
to butterfly arbitrage.
e The corresponding density is often negative for extreme strikes.
@ On the other hand, the SVI-SABR density is guaranteed
positive so long as avt(1+ |p|) < 4 and 12t (1 + |p|) < 4.
o Typical values of these parameters for SPX are vt = 0.6,
a = 0.2, p = —0.7 so for SPX there is empirically no butterfly
arbitrage.
e SABR and SVI-SABR fit parameters are not identical but they
are similar.
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An example: March 2012 again
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Figure 18: SPX Mar-2012 option quotes as of 3pm on 15-Sep-2011. Red
and blue triangles are bid and ask implied volatilities; the orange solid
line is the SVI fit, the green line the SABR fit, the purple line the
SVI-SABR fit
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Plots of g(k)
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Figure 19: g(k) for the SABR fit is in green, g(k) for the SVI-SABR fit
in purple. The negative SABR density is clearly visible in the extreme left
wing.

@ We note that around at-the-money, the two densities are very
similar. However, as the strike moves away from ATM, the
densities diverge and the SABR density goes negative.
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Summary

@ We have found and described a large class of arbitrage-free
SVI volatility surfaces with a simple closed-form
representation.

@ Taking advantage of the existence of such surfaces, we
showed how to eliminate both calendar spread and butterfly
arbitrages when calibrating SVI to implied volatility data.

@ We further demonstrated the high quality of typical SVI fits
with a numerical example using recent SPX options data.

e Finally, we showed how a guaranteed arbitrage-free simple SVI
smile could potentially replace SABR in applications.
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