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Introduction

Motivation

Computation of volatility/covariance of financial asset returns plays a central role
for many issues in finance: risk management, hedging strategies, forecasting...

Black&Scholes model - constant volatility - does not account for:
heteroschedasticity, predictability, volatility smile, covariance between asset returns
and volatility (leverage effect) V
stochastic volatility models proposed to model asset price evolution and to price
options (adding risk factors represented by Brownian motions
[Heston, 1993, Hull and White, 1987, Stein and Stein, 1991], jumps [Bates, 1996],
or introducing memory [Hobson and Rogers, 1998])

Availability of high frequency data have the potential to improve the capability of

computing volatility/covariances in an efficient way to many extend

[Andersen, Bollerslev and Meddahi, 2006] (forecasting),

[Bollerslev and Zhang, 2003] (risk factor models),

[Fleming, Kirby and Ostdiek, 2003] (asset allocation)....
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Introduction

Volatility: The problem

Volatility is not observable

Estimation
parametric: the expected volatility is modelled through a functional form of
variables observed in the market

non-parametric: the computation of the historical volatility without
assuming a functional form of the volatility
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Introduction Outline

Outline

Definition of Fourier estimator of spot and integrated volatility/covariance

Properties of Fourier estimator with high frequency data

Potentiality of Fourier estimator for some applications:

Quarticity estimation forthcoming Quantitative Finance
Volatility of Volatility and Leverage estimation IJTAF 2010

Forecasting Volatility Quantitative Finance, 2011

Contingent claim pricing-hedging (i.e. stochastic derivation of volatility along the time
evolution) Mathematical Finance, 2003, Malliavin-Thalmaier book, 2005

Non-parametric calibration of the geometry of the Heath-Jarrow-Morton interest rates
dynamics (⇒ measure of hypoellipticity of the infinitesimal generator) Japanese Journal
of Math., 2007
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Introduction Outline

Recent studies

Comparing correlation matrix estimators via Kullback-Leibler divergence, by
Mattiussi, Tumminello, Iori, Mantegna

VaR/CVaR Estimation under Stochastic Volatility Models, by Liu, Han, Chen
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Continuous time model

Non-parametric and model free context

Model: continuous Brownian semimartingale

(B) dpj(t) =
d∑

i=1

σj
i (t) dW i + bj(t) dt, j = 1, . . . , n,

W = (W 1, . . . ,W d) are independent Brownian motions and σ∗∗ and b∗ are adapted
random processes satisfying

E [

∫ 2π

0

(bj(t))2dt] <∞, E [

∫ 2π

0

(σj
i (t))4dt] <∞ i = 1, . . . , d , j = 1, . . . ,m

Objective: estimation of the time dependent volatility matrix:

Σjk(t) =
d∑

i=1

σj
i (t)σk

i (t) j , k = 1, . . . , n
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Continuous time model

Main Issues

p∗(t) asset log-price Brownian semimartingale ⇒ integrated volatility/covariance∫ t

0

Σik(s)ds = P− lim
n→∞

∑
0≤j<t2n

(
pi ((j + 1)2−n)− pi (j2−n)

)(
pk((j + 1)2−n)− pk(j2−n)

)
.

Nevertheless, when sampling high frequency returns, three difficulties arise:

1) the distortion from efficient prices due to the market microstructure noise such as
price discreteness, infrequent trading,...[Roll, 1984].
2) instantaneous volatility computation involves a sort of numerical derivative, which
gives rise to numerical instabilities [Foster and Nelson, 1996, Comte and Renault, 1998]

In the multivariate case also:

3) the non-synchronicity of the arrival times of trades across markets leads to a bias
towards zero in correlations among stocks as the sampling frequency increases
[Epps, 1979]
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Fourier method

Mean covariance [Malliavin and M. 2002, 2009]

Theorem

Consider a process p satisfying the assumption (B). Then we have:

1

2π
F(Σij) = F(dpi ) ∗B F(dpj). (1)

The convergence of the convolution product (1) is attained in probability

where, for k ∈ Z

F(dpi )(k) :=
1

2π

∫ 2π

0

e−ikt dpi (t)

(Φ ∗B Ψ)(k) := lim
N→∞

1

2N + 1

N∑
s=−N

Φ(s)Ψ(k − s)

F(Σij)(k) :=
1

2π

∫ 2π

0

e−ikt Σij(t) dt
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Fourier method

Fourier instantaneous covariance computation

By the theorem we gather all the Fourier coefficients of the volatility matrix by
means of the Fourier transform of the log-returns. Then reconstruct the
co-volatility functions Σij(t) from its Fourier coefficients by the Fourier-Fejer
summation:
let for i , j = 1, 2 and for any |k | ≤ N,

c ij
N(k) :=

1

2N + 1

∑
|s|≤N

F(dpi )(s)F(dpi )(k − s),

then

Σij(t) = lim
N→∞

∑
|k|<N

(1− |k |
N

)c ij
N(k)eikt
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Asymptotic for Fourier estimator

Consistency

Given observation times (t1
i )0≤i≤n1 and (t2

j )0≤j≤n2 , ρ(n) := ρ1(n1) ∨ ρ2(n2) and
ρ∗(n∗) = maxt∗l

|t∗l+1 − t∗l |, define:

ck(dp1
n1

) :=
1

2π

n1−1∑
i=0

e−ikt1
i (p1(t1

i+1)− p1(t1
i ))

ck(dp2
n2

) :=
1

2π

n2−1∑
j=0

e−ikt2
j (p2(t2

j+1)− p2(t2
j ))

ck(Σ12) :=
1

2π

∫ 2π

0

e−iktΣ12(t)dt
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Asymptotic for Fourier estimator

Consistency

Define for any |k| ≤ N

αk(N, p1
n1
, p2

n2
) =

2π

2N + 1

∑
|s|≤N

cs(dp1
n1

)ck−s(dp2
n2

). (2)

Suppose that Nρ(n)→ 0 as N, n→∞. Then, for any k , in probability

αk(N, p1
n1
, p2

n2
)→ ck(Σ12)

HP: continuity. In probability, uniformly in t,

Σ̂12
n1,n2,N(t) :=

∑
|k|≤N

(1− |k |
N

)αk(N, p1
n1
, p2

n2
)eikt → Σ12(t) (3)
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Asymptotic for Fourier estimator

Asymptotic Normality

Suppose and ρ(n)N4/3 → 0, ρ(n)N2α →∞, if α > 2
3 and assumption (A) holds.

Then for any function g ∈ Lip(α), with compact support in (0, 2π),

(ρ(n))−
1
2

∫ 2π

0

g(t)(Σ̂12
n,N(t)− Σ12(t))dt

converges in law to a mixture of Gaussian distribution with variance∫ 2π

0

H ′(t)g2(t)(Σ11(t)Σ22(t) + (Σ12(t))2)dt.

(A) H(t) quadratic variation of time
(i) ρ(n)→ 0 and niρ(n) = 0(1) for i = 1, 2
(ii) Hn(t) := n

2π

∑
t1
i+1
∧t2

j+1
≤t

(t1
i+1 ∧ t2

j+1 − t1
i ∨ t2

j )2I{t1
i ∨t2

j <t1
i+1∧t2

j+1}
→ H(t) as n→∞

(iii) H(t) is continuously differentiable
If data are synchronous and equally spaced then H ′(t) = 1, [Mykland and Zhang, 2006]
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Asymptotic for Fourier estimator

Spot volatility estimators

Alternative estimators of spot volatility, NOT involving numerical derivative of
realized volatility estimators:

[Genon-Catalot, Laredo and Picard, 1992]
[Fan and Wang, 2008]
[Hoffman, Munk and Schmidt-Hieber, 2010]
[Muller, Sen and Stadtmuller, 2011]
[Mancini, Mattiussi and Reno, 2012]
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Model with microstructure noise

Model with microstructure

Microstructure effects

market microstructure effects (discreteness of prices, bid/ask bounce, etc.) cause
the discrepancy between asset pricing theory based on semi-martingales and the
data at very fine intervals

Model for the observed log-returns [M. and Sanfelici, J.F. Econometrics, 2011]

p̃i (t) := pi (t) + ηi (t) for i = 1, 2,

Assumptions:

(M)

M1. p := (p1, p2) and η := (η1, η2) are independent processes, moreover η(t) and η(s)
are independent for s 6= t and E [η(t)] = 0 for any t.
M2. E [ηi (t)ηj(t)] = ωij <∞ for any t, i , j = 1, 2.

or (MD)

the microstructure noise is correlated with the price process and there is also a temporal
dependence in the noise components
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Model with microstructure noise

Fourier estimator of integrated covariance

Σ̂12
N,n1,n2

:=
(2π)2

2N + 1

∑
|s|≤N

cs(dp1
n1

)c−s(dp2
n2

)

If ρ(n)N → 0, the following convergence in probability holds:

lim
n1,n2,N→∞

Σ̂12
N,n1,n2

=

∫ 2π

0

Σ12(t)dt.

In the application we consider also the following version which preserves definite
positiveness of the covariance matrix

Σ̂12
N,n1,n2

:=
(2π)2

N + 1

∑
|s|≤N

(1− |s|
N

)cs(dp1
n1

)c−s(dp2
n2

).
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Model with microstructure noise

Quadratic covariation type estimators

Estimators based on the choice of a synchronization procedure, which gives the
observations times {0 = τ1 ≤ τ2 ≤ · · · ≤ τn ≤ 2π} for both assets

Realized covariation RC 12 :=
n−1∑
i=1

δi (p
1)δi (p

2),

Realized covariation with leads and lags RCLL12 :=
∑

i

L∑
h=−l

δi+h(p1)δi (p
2),

Realized covariance kernels estimator RCLLW 12 :=
∑

i

L∑
h=−l

w(h)δi+h(p1)δi (p
2),

where δi (p
∗) = p∗(τi+1)− p∗(τi ), and w(h) is a kernel.

inconsistent for asynchronous observations and inconsistent under (i.i.d) noise, the
MSE diverges as the number of observations increases; RCLL1,2, RCLLW 1,2 more robust
to microstructure noise, but they are much biased by dependent noise contaminations
[Griffin and Oomen, 2010]
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Model with microstructure noise

Refresh times consistent estimators

• [Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008a] Realized covariance
kernels with refresh times consistent for asynchronous observations/robust to
some kind of noise

K 12 :=
n∑

h=−n

k

(
h

H + 1

)
Γ12

h ,

Γ12
h is h-th realised autocovariance of the two assets, k(·) belongs to a suitable

class of kernel functions (Parzen).
refresh time: choose the first time when both posted prices are updated, setting the price of the quicker asset to its most recent value (last-tick

interpolation)

• [Kinnebrock and Podolskij, 2008] Modulated Realised Covariation
pre-averaging technique to reduce the microstructure effects (if one averages a
number of observed log-prices, one is closer to the latent process p(t))
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Model with microstructure noise

Consistent estimators

• [Hayashi and Yoshida, 2005] All-overlapping estimator

AO12 :=
∑
i,j

δI 1
i
(p1)δI 2

j
(p2)I(I 1

i ∩I 2
j 6=∅),

where δI∗i (p∗) := p∗(t∗i+1)− p∗(t∗i ). Consistent for asynchronous observations,
but NOT robust to noise: V

• [Voev et Lunde, 2007] Sub-sampled All-overlapping estimator
• [Christensen, Podolskij and Vetter, 2012] Pre-averaged All-overlapping estimator
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Model with microstructure noise MSE under noise and asynchronicity

MSE

regular asynchronous trading: the asset 1 trades at regular points: Π1 = {t1
i : i = 1, . . . , n1 and t1

i+1 − t1
i = 2π

n1
}; also asset 2 trades at regular

points: Π2 = {t2
j : j = 1, . . . , n2 and t2

j+1 − t2
j = 4π

n1
}, but no trade of asset 1 occurs at the same time of a trade of asset 2

MSEAOm = o(1) + 2ω11

n
2
−1∑

j=1

E [

∫ t2
j+1

t2
j

Σ22(t)dt] + 2ω22

n−1∑
i=1

E [

∫ t1
i+1

t1
i

Σ11(t)dt]+

+2(n − 1)ω11ω22

MSEFm = o(1) + 2ω11

n
2
−1∑

j=1

D2
N(t1

n−1 − t2
j )E [

∫ t2
j+1

t2
j

Σ22(t)dt]+

+2ω22

n−1∑
i=1

D2
N(t1

i − t2
n
2
−1)E [

∫ t1
i+1

t1
i

Σ11(t)dt] + 4ω11ω22D
2
N(t1

n−1 − t2
n
2
−1)

where DN (t) := 1
2N+1

sin[(N+ 1
2

)t]

sin t
2
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Model with microstructure noise MSE under noise and asynchronicity

Optimal MSE-based Fourier estimator

These estimates allow to measure the MSE of the co-volatility estimators also in
the case of empirical market quote data. Therefore, they can be used to build
optimal MSE-based estimators by choosing the cutting frequency N which
minimizes the estimated MSE instead of the true one.
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Model with microstructure noise Montecarlo Analysis

Montecarlo Analysis

We simulate discrete data from the continuous time bivariate GARCH model[
dp1(t)
dp2(t)

]
=

[
β1σ

2
1(t)

β2σ
2
4(t)

]
dt +

[
σ1(t) σ2(t)
σ3(t) σ4(t)

] [
dW5(t)
dW6(t)

]
dσ2

i (t) = (ωi − θiσ2
i (t))dt + αiσ

2
i (t)dWi (t), i = 1, . . . , 4,

The logarithmic noises η1(t), η2(t) are i.i.d. Gaussian, possibly contemporaneously
correlated.

We generate second-by-second return and variance paths over a daily trading period of h = 6 hours. Then we sample the observations according to

different scenarios: regular synchronous trading with durations ρ1 = ρ(n1) and ρ2 = 2ρ1; regular non-synchronous trading with durations ρ1 and

ρ2 = 2ρ1 and displacement δ · ρ1; Poisson trading with durations between trades drawn from an exponential distribution with means λ1, λ2.
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Model with microstructure noise Montecarlo Analysis

Real (:) and estimated (-) MSE for Σ̂12
N,n1,n2

as a function of the cutting frequency Ncut . Panel A: regular non-synchronous trading setting, with

ρ1 = 5 sec, ρ2 = 10 sec, δ = 2/3 and uncorrelated i.i.d. noise. Panel B: regular non-synchronous trading setting, with ρ1 = 5 sec, ρ2 = 10 sec,
δ = 2/3 and correlated i.i.d. noise. Estimated MSE provides an upper bound of the actual one, can be used to find out an optimal cutting frequency
Ncut
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Model with microstructure noise Montecarlo Analysis

Reg-NS Reg-S + Unc Reg-NS + Unc Reg-NS + Cor

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

5.72e-4 -9.88e-3 3.35e-4 -6.09e-3 7.29e-4 -1.12e-2 4.73e-4 -8.82e-3

RC12
0.5min 2.96e-2 -1.68e-1 1.06e-3 8.80e-4 3.45e-2 -1.80e-1 3.20e-2 -1.74e-1

RC12
1min 9.14e-3 -8.44e-2 2.08e-3 2.70e-3 1.12e-2 -9.16e-2 9.74e-3 -8.65e-2

RC12
5min 1.16e-2 -1.80e-2 1.14e-2 5.00e-3 1.44e-2 -2.33e-2 1.13e-2 -1.68e-2

RCLL12
0.5min 2.88e-3 -1.68e-3 3.34e-3 2.94e-3 3.71e-3 -2.43e-3 3.15e-3 -1.55e-3

RCLL12
1min 6.40e-3 -3.13e-3 6.42e-3 5.04e-3 8.00e-3 -3.37e-4 6.13e-3 3.09e-3

RCLL12
5min 3.35e-2 1.11e-2 3.12e-2 3.15e-4 4.23e-2 -7.22e-3 3.61e-2 6.79e-3

AO12 4.72e-4 -1.20e-3 4.47e-4 -1.08e-3 6.88e-4 9.45e-4 5.98e-4 -5.91e-4

K12 9.33e-4 -8.13e-3 9.13e-4 -5.22e-4 1.28e-3 -6.32e-3 1.09e-3 -7.18e-3

MRC12 2.80e-3 -3.27e-2 2.57e-3 -2.55e-2 3.38e-3 -3.01e-2 2.91e-3 -2.87e-2

Reg-NS + Dep Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.96e-4 -6.32e-3 1.07e-3 -1.38e-2 1.18e-3 -1.53e-2 1.00e-3 -1.43e-2

RC12
0.5min 3.02e-2 -1.66e-1 3.33e-2 -1.76e-1 3.11e-2 -1.70e-1 2.91e-2 -1.64e-1

RC12
1min 9.97e-3 -8.17e-2 1.08e-2 -8.95e-2 1.05e-2 -8.85e-2 1.03e-2 -8.62e-2

RC12
5min 1.47e-2 -1.70e-2 1.28e-2 -2.50e-2 1.36e-2 -2.06e-2 1.23e-2 -2.64e-2

RCLL12
0.5min 4.42e-3 3.20e-3 3.81e-3 -7.98e-3 3.40e-3 -6.84e-3 3.73e-3 -9.08e-3

RCLL12
1min 8.06e-3 -9.21e-4 6.81e-3 -3.41e-3 7.23e-3 1.26e-3 7.80e-3 3.78e-3

RCLL12
5min 3.59e-2 -1.60e-2 3.31e-2 -3.59e-3 3.74e-2 6.35e-3 3.67e-2 -1.47e-2

AO12 7.42e-3 7.46e-2 1.29e-3 -8.75e-4 1.24e-3 9.32e-3 8.10e-3 7.49e-2

K12 5.25e-3 5.43e-2 5.88e-3 -6.35e-2 4.57e-3 -5.46e-2 2.85e-3 -1.95e-2

MRC12 3.93e-3 -1.59e-2 4.19e-3 -3.00e-2 3.71e-3 -2.71e-2 4.72e-3 -2.24e-2

Tabella: Comparison of integrated volatility estimators. The noise variance is 90% of the
total variance for 1 second returns. ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0
seconds for Reg-S and 2 seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for
Poisson trading.

M.E.Mancino (Dept. Math. for Decisions) Fourier Volatility Estimation Method: Theory and Applications with High Frequency DataMarch 14th, 2012 23 / 57



Model with microstructure noise Montecarlo Analysis

Reg-S + Unc Reg-NS + Unc Reg-NS + Cor Reg-NS + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.42e-4 -3.28e-3 3.93e-4 -4.93e-3 4.37e-4 -3.86e-3 8.67e-4 -4.90e-3

RC12
0.5min 3.81e-2 4.01e-3 6.92e-2 -1.66e-1 8.73e-2 -1.81e-1 2.00e+0 -1.47e-1

RC12
1min 2.26e-2 -4.08e-3 3.35e-2 -8.09e-2 4.31e-2 -8.67e-2 1.14e+0 -1.19e-1

RC12
5min 1.93e-2 -4.05e-3 2.21e-2 -1.48e-2 2.67e-2 -8.87e-3 2.84e-1 -5.89e-2

RCLL12
0.5min 2.77e-2 5.92e-3 3.46e-2 -1.57e-3 4.28e-2 2.48e-3 1.37e+0 -3.36e-2

RCLL12
1min 2.29e-2 -1.27e-3 2.59e-2 -9.86e-4 3.45e-2 -8.57e-3 6.82e-1 1.37e-2

RCLL12
5min 4.47e-2 1.02e-3 4.46e-2 1.02e-3 4.91e-2 1.48e-2 2.22e-1 -6.84e-4

AO12 9.76e-2 5.38e-3 7.71e-2 2.49e-2 9.23e-2 -7.94e-3 4.40e+0 -8.95e-3

K12 3.69e-2 -2.57e-3 3.80e-2 1.67e-2 4.94e-2 -7.48e-3 2.14e+0 2.44e-2

MRC12 6.42e-3 -1.66e-2 7.74e-3 -1.40e-2 8.04e-3 -9.84e-3 1.25e-2 -2.21e-2

Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

1.14e-3 -1.26e-2 5.35e-4 -5.62e-3 5.24e-4 -3.54e-3

RC12
0.5min 9.50e-2 -2.10e-1 5.11e-2 -4.78e-2 1.82e+0 -1.44e-1

RC12
1min 4.71e-2 -1.04e-1 3.00e-2 -1.54e-2 1.03e+0 -6.62e-2

RC12
5min 2.79e-2 -3.07e-2 2.39e-2 -1.75e-2 3.01e-1 -3.93e-2

RCLL12
0.5min 4.13e-2 -1.00e-2 3.70e-2 3.25e-4 1.43e+0 6.61e-2

RCLL12
1min 3.18e-2 1.08e-2 2.87e-2 -8.09e-3 6.96e-1 -3.81e-2

RCLL12
5min 5.88e-2 1.61e-2 4.39e-2 -2.27.e-3 2.40e-1 -3.03e-2

AO12 8.83e-2 5.85e-3 1.27e+0 1.07e+0 2.91e+0 1.12e-1

K12 4.87e-2 -5.59e-2 2.63e-1 4.70e-1 1.61e+0 1.83e-3

MRC12 1.23e-2 -2.12e-2 9.94e-3 -2.22e-2 1.58e-2 -2.66e-2

Tabella: Comparison of integrated volatility estimators. Increased Noise (as in
[Griffin and Oomen, 2010]). ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0 seconds for
Reg-S and 2 seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for Poisson trading.
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Quarticity estimator

Feasible estimators

In order to produce feasible central limit theorems for all the estimators, and as
a consequence feasible confidence intervals, it is necessary to obtain efficient
estimators of the so called quarticity, which appears as conditional variance of
asymptotic distribution of the error in the central limit theorems.

Nevertheless, the studies about estimation of quarticity are still few:

estimating integrated quarticity reasonably efficiently is a tougher problem than
estimating the integrated volatility, as the effect of noise is magnified up

[Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008a]
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Quarticity estimator

Fourier Quarticity estimator

First Step: Computation of the Fourier coefficients of the volatility
[Malliavin and M. 2002 Fin. Stoch., 2009 Ann. Stat.]
Second step: [M. and Sanfelici, Quant. Finance ] Computation of the k-th
Fourier coefficient of σ4(t), by the formula of Fourier series of a product.

Theorem

Under the assumption (B), the following convergence in probability holds

F(σ4)(k) = lim
M→∞

∑
|s|≤M

F(σ2)(s)F(σ2)(k − s) (4)

∫ 2π

0

σ4(t)dt = 2πF(σ4)(0).

Note: in order to compute the integrated fourth power of volatility function the

knowledge of the integrated volatility is not sufficient, but (all) the Fourier coefficients of

the volatility are needed.
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Quarticity estimator

Spot quarticity

The fourth power of volatility function can be reconstructed by means of its
Fourier coefficients (4) as the following limit in probability

σ4(t) = lim
N→∞

∑
|k|<N

(1− |k |
N

)F(σ4)(k) exp(ikt) for all t ∈ (0, 2π)
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Quarticity estimator

Fourier quarticity estimator estimator

Define the Fourier estimator of quarticity by

σ4
n,N,M := 2π

∑
|s|<M(1− |s|M )cs(σ2

n,N)c−s(σ2
n,N)

We have chosen the Fourier-Fejer summation, which improves the behavior of the

estimator for very high observation frequencies.

Effectiveness of Fourier estimation method when applied to compute the
quarticity in the presence of microstructure noise, due to the intrinsic robustness
of the Fourier estimator of volatility
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Quarticity estimator

Consistency of Fourier quarticity estimator

Theorem

If ρ(n)NM → 0 and M2

N → 0 as M,N, n→∞, then the following convergence in
probability holds

lim
n,N,M→∞

σ4
n,N,M =

∫ 2π

0

σ4(t)dt

Optimal MSE-based Fourier estimator: This result establishes a link between the number

of observations n and the parameters M, N. In order to obtain a feasible finite sample

estimator of the integrated quarticity, we compute the analytical expression for the MSE

of the Fourier quarticity estimator, thus providing a practical way to optimize the finite

sample performance of the Fourier estimator as a function of the number of frequencies

M and N by the minimization of the estimated mean squared error (MSE), for a given

number of intra-daily observations n.
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Quarticity estimator

Consider the following model for the observed log-returns

p̃(t) := p(t) + η(t)

(A.I) The random shocks η(tj), for any j , are independent and identically distributed
with mean zero and bounded fourth moment.

(A.II) The true return process δj(p) is independent of η(tj) for any j .

Noise Bias

Under the assumptions (B),(A.I),(A.II), then

Noise Bias = Λn,N,M(σ, η) + Ψn,N,M(η),

where Λn,N,M(σ, η) goes to 0 under the conditions MN2

n → 0 and M3

N → 0, as
n,N,M →∞, and

Ψn,N,M(η) =
2

π
(E [η4] + 3E [η2]2)nMD2

N(
2π

n
) (5)

DN (t) := 1
2N+1

sin[(N+ 1
2

)t]

sin t
2

denotes the rescaled Dirichlet kernel.
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Quarticity estimator

Corrected Fourier Estimator

in order to obtain feasible optimal estimators we computed the analytical
expression for the asymptotically vanishing term Λn,N,M(σ, η)

a more efficient estimator of quarticity in the presence of noise can be
constructed with the following correction

σ̂4
n,N,M := σ̃4

n,N,M − M
π D2

N( 2π
n )
∑n−1

j=0 δj(p̃)4

where σ̃4
n,N,M denotes Fourier quarticity estimator under noise observations
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Quarticity estimator Monte Carlo Analysis

Monte Carlo simulation

We simulate second-by-second return and variance paths over a daily trading
period of T = 6 hours, for a total of 252 trading days and n = 21600 observations
per day.
CIR square-root model

dp(t) = σ(t) dW1(t)
dσ2(t) = α(β − σ2(t))dt + νσ(t) dW2(t),

(6)

W1, W2 independent Brownian motions

Parameters’ values: α = 0.01, β = 1.0, ν = 0.05, σ2(0) = 1 and p(0) = log 100 (see

Appendix [Bandi and Russell, 2005]). The logarithmic noises η are Gaussian i.i.d. and

independent from p; we consider a noise-to-signal ratio of ζ = 2 or ζ = 4.
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Quarticity estimator Monte Carlo Analysis

Choice of M and N

N is the most critical parameter in the design of the Fourier estimator, especially
in the presence of noise, as

the choice of N is crucial for an efficient computation of the volatility
coefficients cs(σ2

n,N), which are the bricks used to build the quarticity estimate

most of the microstructure is filtered out by truncating the volatility
coefficients up to N, thus neglecting the noisy highest frequency return
coefficients

the MSE of the non corrected Fourier estimator tends to increase for large
values of M and N ⇒ need for the noise correction to further reduce the
growth of the MSE with respect to M and for an accurate choice of N to
filter out the microstructure effects
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Quarticity estimator Monte Carlo Analysis

MSE of σ̃4
n,N,M averaged over the whole dataset (252 days) as a function of M and N, ζ = 4.
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Quarticity estimator Monte Carlo Analysis

Effect of the noise correction on the MSE and BIAS. The dotted line refers to σ̃4
n,N,M , while the solid line to the corrected estimator σ̂4

n,N,M .
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Quarticity estimator Monte Carlo Analysis

Comparison analysis

Realized quarticity type estimators use lower frequency (5-15 minutes)

RQ :=
n

3T

n−1∑
i=0

δi (p)4 [Barndorff-Nielsen and Shephard, 2002]

realized bipower quarticity [Barndorff-Nielsen and Shephard, 2004a]

BQ :=
n

T

n−1∑
i=1

|δi (p)|2|δi−1(p)|2,

realized power and bipower quarticity [Barndorff-Nielsen and Shephard, 2004b]

Q :=
n

2T

n−1∑
i=0

δi (p)4 −
n−1∑
i=1

|δi (p)|2|δi−1(p)|2
 ,

realized tripower quarticity [Andersen, Bollerslev, Frederiksen and Nielsen, 2006]

TQ1 := µ
−3
4/3

n2

(n − 2)T

n−1∑
i=2

|δi (p)|4/3|δi−1(p)|4/3|δi−2(p)|4/3
,

realized quadpower quarticity [Barndorff-Nielsen and Shephard, 2006]

QQ := µ
−4
1

n

T

n−1∑
i=3

|δi (p)||δi−1(p)||δi−2(p)||δi−3(p)|,

(µp = E(|Z|p ), Z is a standard normally distributed r.v.)
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Quarticity estimator Monte Carlo Analysis

Existing methods

Estimators using all data:

subsampled realized (bipower) quarticity estimators [Ghysels and Sinko, 2007]

RQsub :=
1

S

S∑
s=1

RQ(s)

the RQ(s)’s are computed on different non overlapping subgrids using skip-S returns

preaveraging method [Jacod, Li, Mykland, Podolskij and Vetter, 2009]

Qav =
1

3θ2ψ2
2

n−kn+1∑
i=0

(p̄n
i )4 −

ρ(n)ψ1

θ4ψ2
2

n−2kn+1∑
i=0

(p̄n
i )2

i+2kn−1∑
j=i+kn

(δj (p))2 +
ρ(n)ψ2

1

4θ4ψ2
2

n−3∑
i=0

(δi (p))2(δi+2(p))2
,

where the pre-averaged price process is

p̄n
i =

1

kn

 kn−1∑
j=kn/2

pi+j −
kn/2−1∑

j=0

pi+j

 , θ = kn

√
ρ(n), ψ1 = 1, ψ2 = 1/12.

Note: nearest neighbor truncation estimators [Andersen, Dobrev and Schaumburg, 2011] are specifically designed to cope with jumps but are less efficient

than the multipower variation statistics in scenarios without jumps
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Quarticity estimator Monte Carlo Analysis

Comparison analysis

Unfeasible Feasible
MSE BIAS MSE BIAS

σ̃4
n,N,M 6.71e-4 6.72e-3 7.21e-4 8.09e-3
σ̂4

n,N,M 6.65e-4 6.27e-3 7.01e-4 6.75e-3
RQ 4.48e-3 4.08e-2 5.44e-3 3.18e-2
BQ 4.71e-3 2.29e-2 5.67e-3 3.01e-2
Q 5.46e-3 3.96e-2 7.45e-3 3.26e-2
TQ1 5.45e-3 2.36e-2 7.34e-3 3.75e-2
TQ2 5.19e-3 2.03e-2 6.99e-3 3.44e-2
TQ(k) 5.89e-3 3.89e-2 8.41e-3 3.90e-2
QQ 5.38e-3 2.07e-2 7.21e-3 3.34e-2
RQsub 3.16e-3 2.90e-2 3.17e-3 2.78e-2
BQsub 7.59e-4 -1.43e-2 2.41e-3 -9.56e-3
Qav 3.39e-4 -6.81e-3 4.36e-4 -3.37e-3

Tabella: Microstructure effects (ζ = 2). “Feasible”: the estimators have been optimized with the rules provided by the literature for the other

estimators, and with the feasible MSE minimization for Fourier estimator. “Unfeasible” stands for the “non feasible minimization of the real MSE”.

Optimal feasible sampling interval for realized type estimators is approx 2 min.
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Quarticity estimator Monte Carlo Analysis

Unfeasible Feasible
MSE BIAS MSE BIAS

σ̃4
n,N,M 1.18e-3 1.62e-2 1.31e-3 1.71e-2
σ̂4

n,N,M 7.43e-4 1.14e-4 1.03e-3 -9.57e-4
RQ 1.05e-2 1.11e-2 1.38e-2 5.79e-2
BQ 1.21e-2 3.17e-2 1.68e-2 6.05e-2
Q 1.36e-2 3.23e-2 1.74e-2 5.66e-2
TQ1 1.49e-2 3.14e-2 2.07e-2 6.77e-2
TQ2 1.35e-2 2.25e-2 1.91e-2 6.04e-2
TQ(k) 1.36e-2 3.81e-2 1.90e-2 6.64e-2
QQ 1.37e-2 1.52e-2 1.87e-2 5.51e-2
RQsub 7.08e-3 3.35e-2 7.35e-3 4.80e-2
BQsub 8.37e-4 -1.55e-2 4.96e-3 -1.48e-2
Qav 5.05e-4 -3.59e-3 7.55e-4 -1.83e-3

Tabella: Microstructure effects (ζ = 4). Same format as Table 3. Optimal feasible
sampling interval for realized type estimators is approx 4 min.
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Quarticity estimator Monte Carlo Analysis

Unfeasible Feasible
MSE BIAS MSE BIAS

σ4
n,N,M 6.62e-4 -2.60e-3 7.01e-4 3.52e-4

RQ 1.06e-3 9.03e-3 2.52e-3 -2.21e-3
BQ 8.69e-4 -1.25e-2 2.42e-3 -6.19e-3
Q 1.69e-3 5.47e-3 3.80e-3 -2.21e-4
TQ1 1.12e-3 -1.63e-2 2.72e-3 -6.64e-3
TQ2 1.13e-3 -1.69e-2 2.71e-3 -8.45e-3
TQ(k) 1.02e-3 -1.05e-2 2.66e-3 -2.96e-3
QQ 1.32e-3 -1.94e-2 3.10e-3 -8.47e-3
RQsub 7.85e-4 1.03e-2 1.86e-3 -4.85e-3
BQsub 3.31e-3 -3.76e-2 3.81e-3 -4.83e-2
Qav 7.93e-4 -5.95e-3 8.79e-4 -7.67e-3

Tabella: Irregular trading times and no noise. [Andersen, Dobrev and Schaumburg, 2011]: realized quarticity estimators are badly affected by

irregular trading (they assume equal spacing and involve a multiplication by n/T ). We simulate a scenario with Poisson irregular trading times with

durations between observations drawn from an exponential distribution with means λ = 5 sec. Although no microstructure effects are taken into account,

the optimal sampling interval for the realized quarticity-type estimators ranges from 0.4 to 0.69 min
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Quarticity estimator Monte Carlo Analysis

Unfeasible Feasible
MSE BIAS MSE BIAS

σ̃4
n,N,M 1.79e-3 1.93e-2 4.87e-3 6.14e-2
σ̂4

n,N,M 9.36e-4 -1.31e-3 2.45e-3 3.72e-2
RQ 4.94e-3 3.96e-2 6.23e-3 3.06e-2
BQ 4.74e-3 3.72e-2 6.12e-3 2.43e-2
Q 6.68e-3 3.95e-2 8.66e-3 3.38e-2
TQ1 5.42e-3 3.32e-2 7.10e-3 2.72e-2
TQ2 5.16e-3 3.05e-2 6.75e-3 2.36e-2
TQ(k) 5.50e-3 2.69e-2 8.39e-3 2.93e-2
QQ 5.40e-3 2.96e-2 7.24e-3 2.36e-2
RQsub 3.26e-3 2.41e-2 3.30e-3 2.19e-2
BQsub 2.88e-3 -2.81e-2 3.32e-3 -2.54e-2
Qav 1.75e-3 1.43e-2 1.92e-3 2.46e-2

Tabella: Irregular trading times and microstructure effects (ζ = 2). Same format as
Table 3.
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Quarticity estimator Extensions

Multivariate case

The Fourier method was originally proposed [Malliavin and M. 2002] for
estimating multivariate volatility in order to overcome the difficulties arising
by applying the quadratic covariation formula to the true return data, due to
the non-synchronicity of observed prices for different assets.
Thus we can extend without essential changes the univariate theory in order
to obtain a high frequency estimator of the multivariate counterpart of
quarticity.

First Step: Estimate the Fourier coefficients of the volatility matrix function
Second Step: Apply the product formula

[Barndorff-Nielsen and Shephard, 2004b] propose a consistent estimator of multivariate

quarticity, but microstructure noise and asynchronicity is not considered.

[Christensen, Podolskij and Vetter, 2012] combine local averages and the AO estimator
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Volatility of Volatility and Leverage

Fourier estimator properties

1) uses all the available observations, no synchronization of the original data: it is
based on the integration of the time series of returns rather than on its
differentiation
2) it is designed specifically for high frequency data: by cutting the highest
frequencies, it uses as much as possible of the sample path without being more
sensitive to market frictions

Focus

3) it allows to reconstruct the volatility/covariance as a stochastic function of
time: we can handle the volatility function as an observable variable
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Volatility of Volatility and Leverage

Stochastic Volatility Model

{
dp(t) = σ(t)dW0(t) + a(t)dt
dv(t) = γ(t)dZ (t) + b(t)dt

v(t) := σ2(t) is the variance process,
W0 and Z correlated Brownian motions: η(t)dt = dW0(t) ∗ dZ (t)

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]

[Malliavin and M., 2002 C.R.A.S., Ser.I] [Barucci and M., 2010 IJTAF]
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Volatility of Volatility and Leverage

Method

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]

1. compute the Fourier coefficients of the unobservable instantaneous variance process
v(t), t ∈ [0,T ] in terms of the Fourier coefficients of p(t) V v(t) is reconstructed from
its Fourier coefficients by the Fourier-Fejer summation method

2. the instantaneous variance v(t) is handled as an observable variable V we iterate the
procedure to compute the volatility of the variance process identifying the two
components: volatility of variance (γ(t)) and asset price-variance covariance (%(t))

3. finally compute η(t) by to the identity %(t) = η(t)σ(t)γ(t) with σ(t) and γ(t) a.s.
positive
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Volatility of Volatility and Leverage

Volatility of Volatility

Derive an estimator for Fourier coefficients (ck(γ2)) of γ2(t) given the
observations of the variance process:
By parts

ck(dvn,M) = ikck(vn,M) +
1

2π
(vn,M(2π)− vn,M(0)),

where ck(vn,M) were computed from dp

Let

ck(γ2
n,N,M) :=

2π

2N + 1

∑
|j|≤N

cj(dvn,M)ck−j(dvn,M)

If N4

M → 0 and M
5
4 ρ(n)→ 0 for n,N,M →∞

P − lim
n,N,M→∞

ck(γ2
n,N,M) = ck(γ2)
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Volatility of Volatility and Leverage

Leverage

To compute the instantaneous covariance %(t) we exploit the multivariate
version of Fourier estimator

obtain a consistent estimator of the k-th Fourier coefficient of %(t) starting
from the Fourier coefficients of the observed asset returns

ck(%n,N,M) =
2π

2N + 1

∑
|j|≤N

cj(dpn)ck−j(dvn,M)

If N2

M → 0 and Mρ(n)→ 0 for n,N,M →∞, then

P − lim
n,N,M→∞

ck(%n,N,M) = ck(%)
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Volatility of Volatility and Leverage

(Preliminary) Montecarlo Analysis

Replicate numerical experiment by [Bollerslev and Zhou, 2002] who apply a
generalized moment method (GMM) exploiting high frequency data, to
estimate ξ, ξη(= %) and square root process:

dp(t) =
√

v(t)dW0(t)

dv(t) = k(θ − v(t))dt + ξ
√

v(t)dZ (t)

k=mean reversion
θ=long run
ξ= volatility of variance

W0,Z are standard Brownian motions dW0(t) ∗ dZ (t) = ηdt
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Volatility of Volatility and Leverage Montecarlo Analysis

Montecarlo Analysis

We consider three parameter scenarios suggested in [Bollerslev and Zhou, 2002]:

Scenario A : k = 0.03, θ = 0.25, ξ = 0.1,

Scenario B : k = 0.1, θ = 0.25, ξ = 0.1,

Scenario C : k = 0.1, θ = 0.25, ξ = 0.2,

Two values of η: η = −0.2 and η = −0.7
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Volatility of Volatility and Leverage Montecarlo Analysis

True values Mean Median Standard Deviation
T=1000 T=4000 T=1000 T=4000 T=1000 T=4000

Panel A
ξη = −0.02 -0.0220 -0.0221 -0.0125 -0.0262 0.2157 0.1474
ξ = 0.1 0.1040 0.1014 0.1040 0.1014 0.0890 0.0768

Panel A
ξη = −0.07 -0.0706 -0.0729 -0.0622 -0.0730 0.2201 0.2106
ξ = 0.1 0.1075 0.1048 0.1075 0.1048 0.0856 0.0138

Panel B
ξη = −0.02 -0.0181 -0.0282 -0.0177 -0.0201 0.2865 0.2488
ξ = 0.1 0.1012 0.1069 0.1012 0.1069 0.0699 0.0695

Panel B
ξη = −0.07 -0.0717 -0.0737 -0.1314 -0.0711 0.2828 0.2560
ξ = 0.1 0.1330 0.1075 0.1331 0.1075 0.1188 0.0753

Panel C
ξη = −0.04 -0.0469 -0.0409 -0.1394 -0.0373 0.2707 0.1987
ξ = 0.2 0.2023 0.2066 0.2341 0.2165 0.1474 0.0892

Panel C
ξη = −0.14 -0.1263 -0.1569 -0.1442 -0.1561 0.3380 0.0616
ξ = 0.2 0.1994 0.2006 0.1984 0.2130 0.1571 0.0926

Tabella: Average value, median value and standard deviation of ξ and of ξη for three
parameter scenarios, two correlation values and two choices of the size of the simulation
sample.

Simulation results are satisfactory. The mean and the median of the parameters obtained in Table 7 are similar to those obtained in
[Bollerslev and Zhou, 2002], only the standard deviation is slightly higher.

Note: the methodology in [Bollerslev and Zhou, 2002] exploits the knowledge of the square root model that generates the asset price observations, our
methodology instead is model free and is able to recover the parameters of the data generating process without making a parametric assumption.
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Volatility of Volatility and Leverage Montecarlo Analysis

The performance of Fourier method is comparable to the one of the parametric
method proposed in [Bollerslev and Zhou, 2002].
This exercise is only an illustrative example to show the efficiency of the method:
as a matter of fact, parametric methods exploiting the assumption of a model, are
expected to outperform non parametric methods.
Further analysis on going, where microstructure contamination is included.

[Bandi and Renó, 2012]
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Conclusion

Conclusion

We have seen that the Fourier estimator of covariance is:
(i) consistent under asynchronous trading,
(ii) positive definite,
(iii) efficient in the presence of various types of microstructure noise:
asymptotically unbiased and the MSE of the Fourier estimator converges to a
constant, as the number of observations increases,
(iv) further it allows us to treat volatility as an observable variable, thus we can
exploit the knowledge of its path
V a very interesting alternative especially when microstructure effects are
particularly relevant in the available data
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