EurizonCapital

Risk Attribution, Risk Budgeting and
 Portfolio's implied views: A factor approach

Domenico Mignacca
Domenico.mignacca@eurizoncapital.com

Scuola Normale Superiore - Pisa
December 13th 2011

Agenda

1. Introduction
2. Risk Attribution and Risk Budgeting in a factor model
3. Implied Views and Risk Attribution
4. An example
5. Conclusion

Introduction

EurizonCapital

The aim of the presentation is to propose a unique framework that can be used for risk attribution, risk budgeting and to monitor implied views on portfolios in order to have a complete control of coherence of the entire investment process of an Asset Manager.

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital
Let us consider a simple factor model:

$$
[1] r_{t}=B f_{t}+\varepsilon_{t}
$$

where: r is a Nx 1 vector of returns on N assets
B is a matrix of coefficients $\mathrm{N} \times \mathrm{K}$
f is a $\mathrm{K} \times 1$ vector containing returns of factors ε is a $N x 1$ white noise vector.

Moreover, we suppose that:

$$
E\left(f_{t}^{\prime} \varepsilon_{t}\right)=0 \text { and } \varepsilon_{t} \approx \mathrm{~N}(0, \Omega)
$$

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

In matrix terms, we can re-write equation [1] as follows:

$$
\text { [2] } R=B F+E
$$

From equation [2]:

$$
[3] \sigma(R)=\sqrt{\mathrm{B} \Sigma \mathrm{~B}^{\prime}+\Omega}
$$

Where Σ is the variance-covariance matrix of factors.

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

Consider now a portfolio vector (q) and a benchmark vector (b) which are linear combination of the N assets. We have a vector of bets on the N assets $\mathrm{h}=\mathrm{q}-\mathrm{b}$ and we can recover from equation [2] and [3], the following:

$$
\text { [4] } h^{\prime} R=h^{\prime} B F+h^{\prime} \mathrm{E}
$$

And:

$$
[5] \sigma\left(h^{\prime} R\right)=\sqrt{h^{\prime} \mathrm{B} \Sigma \mathrm{~B}^{\prime} h+h^{\prime} \Omega h}
$$

Where equation [5] identifies TEV.

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

We can now decompose the active risk. Consider that we can decide if we want to view the risk using the asset's (N) dimension or the factor's (K) dimension or both ($\mathrm{N} \times \mathrm{K}$), plus the idiosyncratic elements. We recover all the three kind of decomposition. First of all, we start from the asset dimension's risk decomposition.

$$
\text { [6] } \frac{\partial \sigma\left(h^{\prime} R\right)}{\partial h}=\frac{\left(B \Sigma B^{\prime}+\Omega\right) h}{\sigma\left(h^{\prime} R\right)}
$$

For sake of simplicity we define $\sigma=\sigma\left(h^{\prime} R\right)$. Equation [6] contain the sensitivity of the portfolio active risk (TEV) w.r.t. changes in the vector of bets.

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

We can decompose the sensitivity in two distinct elements: factor's sensitivity and specific sensitivity:

$$
\text { [7] } \frac{\partial \sigma}{\partial h}=\frac{\left(B \Sigma B^{\prime}\right) h}{\sigma}+\frac{\Omega h}{\sigma}
$$

If we pre-multiply equation [7] by a diagonal matrix <h>, we obtain the risk attribution at the asset level with the idiosincratic risk extrapolated from the total:

$$
[8] \text { Risk Attribution }=\langle h\rangle \frac{\partial \sigma}{\partial h}=\langle h\rangle \frac{\left(B \Sigma B^{\prime}\right) h}{\sigma}+\langle h\rangle \frac{\Omega h}{\sigma}
$$

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

We can also calculate the TEV sensitivity due to change in factor exposures:

$$
\begin{aligned}
& \text { [9] } \frac{\partial \sigma}{\partial B^{\prime} h}=\frac{\partial h}{\partial B^{\prime} h} \frac{\partial \sigma}{\partial h} \Rightarrow \frac{\partial \sigma}{\partial h}=\frac{\partial B^{\prime} h}{\partial h} \frac{\partial \sigma}{\partial B^{\prime} h} \Rightarrow \\
& \Rightarrow B \frac{\partial \sigma}{\partial B^{\prime} h}=\frac{B \Sigma B^{\prime} h}{\sigma}+\frac{\Omega h}{\sigma} \Rightarrow \\
& \Rightarrow \frac{\partial \sigma}{\partial B^{\prime} h}=\frac{\Sigma B^{\prime} h}{\sigma}+\left(B^{\prime} B\right)^{-1} B^{\prime} \frac{\Omega h}{\sigma}
\end{aligned}
$$

Given that $\operatorname{rank}(B)=K$.
We obtain the risk attribution due to factor exposures (see [10.a] for explanation of "z"):
$[10]\left\langle B^{\prime} h\right\rangle \frac{\partial \sigma}{\partial B^{\prime} h}=\left\langle B^{\prime} h\right\rangle \frac{\Sigma B^{\prime} h}{\sigma}+z\left\langle B^{\prime} h\right\rangle\left(B^{\prime} B\right)^{-1} B^{\prime} \frac{\Omega h}{\sigma}$

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

We must say that only if B is a full rank matrix and with $N=K$ we have that the idiosincratic decomposition at the factors level sum up to the total Idiosincratic TEV, ie :

$$
h^{\prime} B\left(B^{\prime} B\right)^{-1} B^{\prime} \frac{\Omega h}{\sigma}=\frac{h^{\prime} \Omega h}{\sigma}
$$

In general $\mathrm{N} \gg \mathrm{K}$, and thus we must correct the vector of factor "idiosincratic" sensitivities:
$\left(B^{\prime} B\right)^{-1} B^{\prime} \frac{\Omega h}{\sigma}$
by a scalar equal to:

$$
[10 . \mathrm{a}] z=\frac{h^{\prime} \Omega h}{\sigma} / h^{\prime} B\left(B^{\prime} B\right)^{-1} B^{\prime} \frac{\Omega h}{\sigma}
$$

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

We can also decompose the TEV using the two dimensions, factors and assets (having the idiosyncratic risk decomposition calculated from the second part of equation [8]):
[11.a]TEV decomposition $=\left(\left.\left(\left\langle B^{\prime} h\right\rangle \frac{\Sigma B^{\prime}}{\sigma}\langle h\rangle\right)^{\prime} \right\rvert\,\langle h\rangle \frac{\Omega h}{\sigma}\right)$
The dimension of the matrix contained in equation [11.a] is $\mathrm{Nx}(\mathrm{K}+1)$, where the first $\mathrm{N} \times \mathrm{K}$ part contain the factor decomposition attributed to each single asset and the last column contains the idiosyncratic risk attributed to each single asset in the portfolio.

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

We can separate "pure" risk from the diversification effect in equation [11], using the following representation:
[11.b] $\left(\left(\left\langle B^{\prime} h\right\rangle^{\operatorname{diag}(\Sigma) B^{\prime}} \frac{\operatorname{di}}{\sigma} h^{\prime}\right\rangle^{\prime}\left|\left(\left\langle B^{\prime} h\right\rangle \frac{\Sigma B^{\prime}}{\sigma}\langle h\rangle-\left\langle B^{\prime} h\right\rangle \frac{\operatorname{diag}(\Sigma)_{B}^{\prime}}{\sigma}\langle h\rangle\right)^{\prime}\right|\langle h\rangle \frac{\Omega h}{\sigma}\right)$

The first $\mathrm{N} \times \mathrm{K}$ block represent the uncorrelated risk, the second $\mathrm{N} \times \mathrm{K}$ block the diversification effect and the last $N \times 1$ vector contains the idiosyncratic risk.

Risk Attribution and Risk Budgeting in a factor model

EurizonCapital

Once we have the two dimensional risk decomposition, we can recover easily a $\mathrm{N} x(\mathrm{~K}+1)$ matrix of sensitivities (Marginal Contribution to Active Risk: MCAR).
We know that the decomposition is obtained multiplying exposure times sensitivity and as we already know the result of this product from equation
[11], we can recover the sensitivity matrix dividing each element of equation
[11] by the corresponding element of the following matrix wich contain exposures:
exposures $\left.=\left(\left(B^{\prime}\langle h\rangle\right)\right)^{\prime} \mid h\right)$

Risk Attribution and Risk Budgeting in a factor model

Then:
[12.a]MCAR $=\left(\left.\left(\left\langle B^{\prime} h\right\rangle \frac{\Sigma B^{\prime}}{\sigma}\langle h\rangle\right) \right\rvert\,\langle h\rangle \frac{\Omega h}{\sigma}\right) \cdot /\left(\left(B^{\prime}\langle h\rangle\right)^{\prime} \mid h\right)$
Or, which is the same:
[12.b]MCAR $=\left(\left.\left(u^{\prime} \otimes \frac{\Sigma B^{\prime} h}{\sigma}\right)^{\prime} \right\rvert\, \frac{\Omega h}{\sigma}\right)$

Where u is a unit vector of dimension N .

Implied Views and Risk Attribution

EurizonCapital

For benchmark oriented products, consider the following utility function (when h'u=0, where " u " is a unit vector):

$$
[13] \mathrm{U}=h^{\prime} B f-\lambda\left(h^{\prime} B \Sigma B^{\prime} h+h^{\prime} \Omega h\right)
$$

Where the utility is a positive function of the excess return of the portfolio vs benchmark and a negative function of the square of the TEV scaled by a positive risk adversion coefficient λ.
Let us suppose that our portfolio is a relative efficient portfolio vs benchmark with an expected IR equal to Θ. In case h'u $=0$, we use the adjusted Info Ratio (we adjust the excess return by the borrowing/lending cost/return):

$$
\theta=\frac{h^{\prime} r-r_{f} h^{\prime} u}{\sigma}
$$

Implied Views and Risk Attribution

EurizonCapital

From [13] we can derive the First Order Condition (FOC) for a maximum:

$$
[14] \frac{\partial U}{\partial h}=B f-2 \lambda\left(B \Sigma B^{\prime} h+\Omega h\right)=0 \Rightarrow r=B f=2 \lambda\left(B \Sigma B^{\prime} h+\Omega h\right)
$$

If we premultiply [14] by h^{\prime} we obtain:

$$
[15] h^{\prime} B f=2 \lambda\left(h^{\prime} B \Sigma B^{\prime} h+h^{\prime} \Omega h\right) \Rightarrow 2 \lambda=\frac{\theta}{\sigma}
$$

Where σ is the TEV of the portfolio.

Implied Views and Risk Attribution

Now we can recover an important result. We insert equation [15] in [14] and obtain a well known result:

$$
[16] B f=\theta\left(\frac{B \Sigma B^{\prime} h}{\sigma}+\frac{\Omega h}{\sigma}\right)
$$

Equation [16] is the vector of implied active alpha which can be obtained multiplying the expected Information Ratio for the Marginal Contribution to Active Risk.
If we derive the Utility Function w.r.t. the factor exposure (cfr. eq. 10.a), we obtain:

$$
[17] f=\theta\left(\frac{\Sigma B^{\prime} h}{\sigma}+z\left(B^{\prime} B\right)^{-1} B^{\prime} \frac{\Omega h}{\sigma}\right)
$$

Implied Views and Risk Attribution

EurizonCapital

At this point we have a direct link between risk attribution and implied views.
Moreover, we can decide from which perspective we want to value the views (from an asset perspective or from the factor perspective) :

Factor's perspective implied active alpha (pure effect):
[17]Factor's Implied Alpha $=\theta \frac{\Sigma B^{\prime} h}{\sigma}$

Asset's perspective implied active alpha:
[18]Asset's Implied Alpha $=\theta \frac{\left(B \Sigma B^{\prime}\right) h}{\sigma}+\theta \frac{\Omega h}{\sigma}$

Implied Views and Risk Attribution

EurizonCapital

Where:
$\theta \frac{\left(B \Sigma B^{\prime}\right) h}{\sigma}$
Is the vector of implied alpha of the assets determined by their factor's exposure, while:
$\theta \frac{\Omega h}{\sigma}$

Is the implied alpha determined by the idiosyncratic component.

Implied Views and Risk Attribution

EurizonCapital

Now we have all the elements to judge the coherence of the active portfolio with the tactical views of an Asset Management company.

Now suppose the company has views on factors: we can evaluate a portfolio using it's active exposure but also the factor's active implied alpha vector contained in equation [17].

The process will be in three steps:

1. Risk Budgeting (common factors, selection risk, currency risk)
2. Coherence of the portfolio positions with respect to which the Company gave an investment view (only if the active risk contribution is "significant")
3. Risk attribution of the sum of all the portfolio positions with respect to which the company has not given an investment view

Implied Views and Risk Attribution

EurizonCapital

When we sum risk contribution, we have the problem of how to calcultate the aggregate MCAR. We can calculate in three different way which imply three different meaning:
(i) $M C A R=\frac{\sum_{i}\left|h_{i}\right| M C A R_{i}}{\left|h_{i}\right|}$ (ii) MCAR $=\frac{\sum_{i} h_{i} M C A R_{i}}{\left|h_{i}\right|}$ (iii) MCAR $=\frac{\sum_{i} h_{i} M C A R_{i}}{h_{i}}$

We focus our attention on (i) and (iii).
While equation (i) is a sort of weighted average of implied returns, equation
(iii) is the implied return of the strategy embedded in the disaggregated
"area".

Implied Views and Risk Attribution

EurizonCapital

Even though equation (iii) maintains the properties that the risk=bet x MCAR, we prefer to use definition (i) because using (i) we can capture the implied view without mixing the information with the fact that the fund manager use it as an hedging (via h_{i}).

Moreover, it could be interesting to calculate the ratio of (iii) and (i) to obtain the "beta" of the embedded strategy vs the average return of the "sector".

Equation (i) reflects the BarraOne MCAR calculation methodology.

Implied Views and Risk Attribution

EurizonCapital

The following table shows how we can monitor an investment view by using the MCAR provided by BarraOne:

From the table we can see the correspondence between the sign of the MCAR and the implied view.

We need only to check the sign of the active risk contribution to be sure that the position is not an hedging.

An example

EurizonCapital

Let's consider a balanced portfolio with benchmark 20\% Cash, 45\% Bond Govt, 10\% Corporate Investment Grade, 25\% Equity.

The Tracking Error Volatility from BarraOne - BIM is 1.00\% and it is split between common factors (79 bps), selection risk (3 bps) and currency risk (18 bps).

Risk Source	Active Portfolio Risk Contribution	Active Portfolio Risk Contribution (in \%)	Portfolio Risk Contribution	Benchmark Risk
Total Risk	1.00	100%	5.13	4.58
Local Market Risk	0.82	82%	4.83	4.54
Common Factor Risk	0.79	79%	4.82	4.53
Industry	0.54	54%	4.24	4.27
Style	0.01	1%	0.09	0.32
Term Structure	0.15	15%	0.30	1.88
Spread	0.07	7%	0.17	0.24
Emerging Market	0.02	2%	0.02	0.00
Selection Risk	0.03	3%	0.01	0.24
Currency Risk	0.18	18%	1.85	

An example

EurizonCapital

Let's consider the set of the investment views:
\square underweight (negative view)
\checkmark Cash
\checkmark Bond Core (GER / US)
\checkmark Bond Quasi Core (FRA / ...)
\checkmark Bond PIGS
\checkmark Equity US
\checkmark Equity Pacific ex-Japan
\square overweight (positive view)
\checkmark Bond Italy
\checkmark Corporate High Yield
\checkmark Equity Europe
\checkmark Equity Japan
\checkmark Equity Emerging Markets

		Market Portfolio	Active Portfolio	Portfolio
ज	Cash	10.0\%	-6.1\%	3.9\%
	Cash EUR	10.0\%	-6.1\%	3.9\%
$\begin{array}{ll} 0 \\ \vdots & 0 \\ 0 & 0 \end{array}$	Bond Core	17.0\%	-1.7\%	15.4\%
	Germany	10.3\%	-0.6\%	9.7\%
	USA	6.8\%	-1.1\%	5.7\%

$\begin{array}{ll} \vdots \\ \vdots & \ddots \\ 0 & 0 \\ 0 & 0 \\ 0 & \end{array}$	Bond non Core	25.5\%	-0.5\%	25.0\%
	Quasi Core	7.7\%	-2.0\%	5.7\%
	Italy	10.0\%	6.5\%	16.4\%
	PIGS	7.8\%	-5.0\%	2.9\%
	Bond Inflation Linked	0.0\%		
	EMU Govt Inflation-Linked	0.0\%	0.0\%	
	US Treasuries Inflation-	0.0\%	0.0\%	

	Corp \& Em. Mkts	16.0\%	2.7\%	18.7\%
	Corporate IG	5.1\%	0.0\%	5.1\%
	Corporate HY	7.0\%	2.7\%	9.7\%
	Emerging Markets	4.0\%	0.0\%	4.0\%

离	Equity	31.4\%	5.6\%	37.0\%
	World Developed	26.5\%	2.9\%	29.4\%
	Equity US	10.8\%	-0.6\%	10.2\%
	Equity Europe	8.7\%	4.5\%	13.2\%
	Equity Japan	4.2\%	0.5\%	4.6\%
	Equity Pacific ex Japan	2.8\%	-1.5\%	1.4\%
	Equity Emerging Markets	4.9\%	2.7\%	7.6\%

EurizonCapital

Let's consider the Bond Core views. From the BIM factor exposure we can extract the shift factor (active) for Germany (-0.01) and US (+0.06).
Moreover, we have the active risk contribution of the two positions, which are +1 bp for Germany and -2 bps for US. The MCAR are negative: -41.91% and -35.31%.
Since the active risk contributions are marginal (less than 5\% in percentage terms), we can not consider the application of investment views for these two positions. In addition, we must also consider the contributions to active risk of twist and butterfly factors on these two countries.

An example

EurizonCapital

Let's consider the Bond non Core views by aggregating the shift factor for Quasi Core (-0.23) and PIGS (-0.09) countries, while taking the one for Italy (-0.05).

The Quasi Core position contributes for 8 bps (8% of the active risk) and the PIGS position for 4 bps (4\%), so we can evaluate the coherence of these active positions: - Quasi Core \rightarrow MCAR -35.99\% is consistent w/underweight (negative) view

- PIGS \rightarrow MCAR -45.46% is consistent w/underweight (negative) view

The Italy active position contributes for only $1 \mathrm{bp}(1 \%)$, so we can not consider the application of investment views for that position.

An example

EurizonCapital

We have also to consider the twist and butterfly factors for the Quasi Core, Italy and PIGS countries.

We don't have any views on these factors, and the aggregate contribution to the active risks is marginal ($-1 \mathrm{bp} \rightarrow-1 \%$).
Note the negative active exposure on twist PIGS: 0.11 vs 0.13 , and the positive
MCAR 20.77\%.

An example

EurizonCapital

The active exposure on Corporate High Yield is +0.05 (spread factors) and it contributes 10 bps of active risk (10\%):

- Corp HY \rightarrow MCAR $+213.44 \%$ is consistent w/overweight (positive) view

An example

EurizonCapital

The active exposure on Equity US and Equity Europe (industry factors) generate respectevely 16 bps and 21 bps, which are significant, so we can evaluate the coherence with respect to the investment views:

- Equity US \rightarrow MCAR $+17.61 \%$ is NOT consistent w/underweight (neg.) view
- Equity Europe \rightarrow MCAR $+16.78 \%$ is consistent w/overweight (pos.) view

Also the active position on Equity Emerging Markets is relevant (20 bps):

- Equity Emerging Mkts \rightarrow MCAR +13.82 \% is consistent w/overweight view

						rce: BarraOne -	
	Investment Views				Exposure		
		Market Portfolio	Active Portfolio	Portfolio	PORTFOLIO	BENCHMARK	ACTIVE
$\begin{aligned} & \text { ते } \\ & \text { 灾 } \\ & \hline \end{aligned}$	Equity	31.4\%	5.6\%	37.0\%	28.27	25.00	3.27
	World Developed	26.5\%	2.9\%	29.4\%	24.74	22.92	1.83
	Equity US	10.8\%	-0.6\%	10.2\%	8.09	7.19	0.91
	Equity Europe	8.7\%	4.5\%	13.2\%	14.72	13.44	1.28
	Equity Japan	4.2\%	0.5\%	4.6\%	1.14	1.16	-0.02
	Equity Pacific ex Japan	2.8\%	-1.5\%	1.4\%	0.79	1.12	-0.33
	Equity Emerging Markets	4.9\%	2.7\%	7.6\%	3.52	2.08	1.44

source: BarraOne - BIM			
Contribution to Active Risk	Contribution to Active Risk (in \%)		Marginal Contribution to Active Risk
$\mathbf{0 . 5 4}$	$\mathbf{5 4 \%}$		
$\mathbf{0 . 3 4}$	$\mathbf{3 4 \%}$		$\mathbf{1 8 . 8 0 \%}$
0.16	16%		17.61%
0.21	21%		16.78%
0.00	0%		12.03%
-0.03	-3%		8.26%
$\mathbf{0 . 2 0}$	$\mathbf{2 0 \%}$		$\mathbf{1 3 . 8 2 \%}$

An example

EurizonCapital

The contribution to active risk of the style factors is $1 \mathrm{bp}(1 \%)$, coming from a short exposure to size and a long exposure to volatility.

The contribution of the selection risk is $3 \mathrm{bps}(3 \%)$.
Currency risk contributes for 18 bps (18\%), mainly from short USD and JPY.

An example

EurizonCapital

Coming back to our risk budgeting and risk attribution process:

Step 1 - Risk Budgeting

About 80% of the total active risk is allocated on the common factors; the currency component accounts for 18%, while only 3% is generated by security selection (or idiosincratic risk).

An example

EurizonCapital

Step 2 - Coherence of investment views

The position on Equity US is NOT coherent with the investment view.

Asset Class	Investment View	Monitor
Bond Core (GER / US)	Negative	Not significant
Bond Quasi Core (FRA / ...)	Negative	OK
Bond PIGS	Negative	OK
Bond Italy	Positive	Not significant
Corporate High Yield	Positive	OK
Equity US	Negative	NOT OK
Equity Europe	Positive	OK
Equity Japan	Positive	Not significant
Equity Pacific ex-Japan	Negative	Not significant
Equity Emerging Markes	Positive	OK

EurizonCapital

Step 3 - Risk contribution of the other positions

The active risk contribution of the portfolio positions with respect to which the company has not given an investment view is equal to 22% :
\checkmark Style factors $\rightarrow 1 \%$
\checkmark Selection risk $\rightarrow 3 \%$
\checkmark Currency risk $\boldsymbol{\rightarrow} \mathbf{1 8 \%}$

In particular the currency risk contribution is relevant and is generated mainly by the underweight of USD $(-2.49 \% \rightarrow 10 \mathrm{bps}$ of active risk) and JPY $(-0.68 \% \rightarrow 5 \mathrm{bps}$ of active risk).

Conclusion

EurizonCapital

This is just a proposal about how to use BarraOne - BIM risk analysis to monitor the investment process.

We need to do some more analysis in order to find the correct parametrization of the system (i.e., the level at which a risk contribution is considered "significant").

Appendix

EurizonCapital

For an absolute return portfolio, we can use the same framework but we need to be careful because it is not a sufficient condition to have a positive weight on an asset class to have a positive implied view. In case negative correlations are involved sometimes we need a minimum weight to have a positive implied view. Let's start with the following general case were q is the vector of portfolio's weights:
${ }^{[19]} \sigma_{P}=\sqrt{q^{\prime} \Sigma q}$

EurizonCapital

Given that all the element of q are positive, the condition to have an implied positive view on asset " j " is that it's correlation with the portfolio is greater then zero. If it is negative, the implied view is negative. Let's consider that the implied return, under the hypothesi of a Sharpe Ratio (in this cas we use a Sharpe ratio instead an info ratio) is:

$$
[20] r=\frac{\Sigma q}{\sigma_{p}}=M C A R
$$

We still call [20] Marginal Contribution to Active Risk as we compare the portfolio with a benchmark that is a cash account with no risk.

EurizonCapital

We can also easily recover the correlation of asset J with the portfolio in the following way:
$[21] \rho_{j, p}=\frac{\{\Sigma q\}_{j, p}}{\sigma_{j} \sigma_{p}} \Rightarrow \rho_{j, p}=\frac{M C A R_{j}}{\sigma_{j}}$

Then, we need to concentrate our attention to the covariance of the asset j
w.r.t. the portfolio:
$[22] \operatorname{Cov}_{j, p}=q_{j} \sigma_{j}^{2}+\sum_{i \neq j} q_{i} \sigma_{i, j}$

EurizonCapital

We search the value of q for which the correlation is equal to zero and this implies that also the implied return is zero. This means that below this threshold the asset is an hedging while above is a positive bet. We can recover two different kind of thresholds:
(1) Marginal Hedging Threshold (MHT);
(2) Total Hedging Threshold (THT).

EurizonCapital

(1) Marginal Hedging Threshold (MHT): we investigate the value of q for which the correlation is zero, leaving unchanged all the other portfolio's weights.

$$
[22] \operatorname{Cov}_{j, p}=q_{j} \sigma_{j}^{2}+\sum_{i \neq j} q_{i} \sigma_{i, j}=0 \Rightarrow P H T=-\frac{\sum_{i \neq j} q_{i} \sigma_{i, j}}{\sigma_{j}^{2}} \Rightarrow
$$

$\Rightarrow M H T=-\frac{M C A R_{j} \sigma_{p}-q_{j} \sigma_{j}^{2}}{\sigma_{j}^{2}}$

EurizonCapital

(2) Total Hedging Threshold (THT): we investigate the value of q for which the correlation is zero, financing the increasing/decreasing position on q by an equivalent decreasing/increasing in weights in all the other portfolio's asset:

$$
[23] T H T \Rightarrow\left(h_{j}+\Delta\right) \sigma_{j}^{2}+\sum_{i \neq j}\left(h_{i}-\Delta \frac{h_{i}}{1-h_{j}}\right) \sigma_{i, j}=0 \Rightarrow
$$

$$
\Rightarrow T H T=h_{j}+\Delta \text { where } \Delta=-\frac{\operatorname{MCAR}_{\mathrm{j}} \sigma_{P}}{\sigma_{j}^{2}-\frac{1}{1-h_{j}}\left(M C A R_{j} \sigma_{p}-\sigma_{j}^{2} h_{j}\right)}
$$

EurizonCapital

In addition to MHT and THT, we can also calculate a measure of Maximum Hedging Weight (MHW). This quantity measures the weight of a bet or an absolute position that maximise the hedging contribution of the asset classes. In formulas, we search an h_{i} such that minimize equation [24]:

$$
\text { [24] } \min _{h_{i}} h_{i}\left\{\frac{\Sigma h}{\sigma}\right\}_{i}
$$

If we derive [24] for h_{i} we obtain the following:
[25]MHW $=-\frac{\sum_{j \neq i} h_{j} \sigma_{i j}}{2 \sigma_{i}^{2}}=\frac{\left\{\frac{\Sigma h}{\sigma}\right\}_{i} \sigma-h_{i} \sigma_{i}^{2}}{2 \sigma_{i}^{2}}$

