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Multi-Name Credit Modelling: the case of CDOs An introduction to CDOs

How I Learned to Stop Worrying and Love the CDOs – I

In a CDO there are two parties, a protection buyer and a protection
seller.
−→ Protection is bought (and sold) on a reference pool of M names.
−→ Most liquid CDOs (iTraxx or CDX) consider a pool of M = 125 names.
The names may default, generating losses (L) to investors exposed to
those names.
−→ Each time a name defaults the protection seller pays the protection

buyer for the suffered loss.
If the CDO is tranched, then only a portion of the loss of the portfolio
between two percentages A and B is repayed.

LA,B
t :=

M
B − A

[(Lt
M − A

)
1{A< Lt

M <B
} + (B − A) 1{ Lt

M >B
}]
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Multi-Name Credit Modelling: the case of CDOs An introduction to CDOs

How I Learned to Stop Worrying and Love the CDOs – II

Since tranched loss is a non-linear function of single-name losses, the
tranche expectation will depend both on:

1 marginal distributions of the single names’ defaults, and on
2 dependency (or with abuse of language “correlation”) among different

names’ defaults.
The complete description is either the whole multivariate distribution
or the so-called copula function where marginal distributions have
been standardized to uniform distributions.

FX (x) := Q {X ≤ x } , FY (y) := Q {Y ≤ y }

C(u, v) := Q
{
X ≤ F−1X (u),Y ≤ F−1Y (v)

}
Notice that copulas do not define a dynamics for default processes
and the choice of a particular copula family is arbitrary: Gaussian,
t-Student, Archimedean, Marshall-Olkin, . . . .
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Multi-Name Credit Modelling: the case of CDOs An introduction to CDOs

How I Learned to Stop Worrying and Love the CDOs – III

The dependence of the tranche on “correlation” is crucial.
−→ The market assumes a Gaussian copula connecting the defaults of the

125 names, parametrized by a correlation matrix with

125 · 124/2 = 7750 entries.

−→ However, when looking at a tranche:

7750 parameters −→ 1 parameter.

David Li, 2005, Wall Street Journal: [...] “The most dangerous part,”
Mr. Li himself says of the model, “is when people believe everything
coming out of it.” Investors who put too much trust in it or do not
understand all its subtleties may think they have eliminated their risks
when they have not.
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Multi-Name Credit Modelling: the case of CDOs An introduction to CDOs

CDOs on Different Asset Classes – I

CDOs are available on other asset classes, such as
−→ loans (CLO),
−→ residential mortgage portfolios (RMBS),
−→ commercial mortgages portfolios (CMBS), and on and on.
For many of these CDOs, and especially RMBS, quite related to the
asset class that triggered the crisis, the problem is in the data rather
than in the models.
−→ At times data for valuation in mortgages CDOs (RMBS and CDO of

RMBS) can be distorted by fraud.
Even bespoke corporate pools have no data from which to infer
default “correlation” and dubious mapping methods are used.
An intersting example: pricing a CDO on the following underlying. . .
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Multi-Name Credit Modelling: the case of CDOs An introduction to CDOs

CDOs on Different Asset Classes – II

. . . a recently renovated condominium including Brazilian hardwood,
granite countertops, and a value of 275,000 USD.
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Multi-Name Credit Modelling: the case of CDOs An introduction to CDOs

CDOs on Different Asset Classes – III

At times it is not even clear what is in the portfolio, e.g. from the
offering circular of a huge RMBS (more than 300.000 mortgages)

Type of property % of Total
Detached Bungalow 2.65%

Detached House 16.16%
Flat 13.25%

Maisonette 1.53%
New Property 0.02%
Not Known 2.49%

Other 0.21%
Semi Detached Bungalow 1.45%

Semi Detached House 27.46%
Terraced House 34.78%
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Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Beyond copulas – I

Alternative models for implied correlations, based on different
parametrizations, were proposed.
−→ For instance the popular base correlation model, recently extended with

stochastic correllation as in Amraoui and Hitier (2008).
There are several publications that appeared pre-crisis and that
questioned the Gaussian copula and implied correlations.
−→ 2005, Wall Street Journal: How a Formula [Base correlation +

Gaussian Copula] Ignited Market That Burned Some Big Investors.
For further details see Torresetti, Brigo and Pallavicini (2006)
“Implied Correlation: a paradigm to be handled with care”.
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Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Beyond copulas – II

Brigo, Pallavicini and Torresetti (2006,2007) propose default
clustering with the GPL and GPCL models.
Is default clustering a realistic feature ?
−→ Thrifts in the early 90s at the height of the loan and deposit crisis.
−→ Airliners after 2001.
−→ Autos and financials more recently.
From the September, 7 2008 to the October, 8 2008, we witnessed
seven credit events: Fannie Mae, Freddie Mac, Lehman Brothers,
Washington Mutual, Landsbanki, Glitnir, Kaupþing.
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Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Beyond copulas – III

Errais, Giesecke and Goldberg (2006) introduce self-excitement
effects, namely one default increases the intensity of others.
Is self-excitement a realistic feature ?
−→ The collapse of Lehman Brothers brought the financial system near to

a breakdown.
−→ Lehman was an important node within a network of derivative

contracts: it sold CDS’s on a large number of firms and it was itself a
reference entity in many other CDS’s.

−→ Its default triggered other insurance sellers into default, leaving the
corresponding protection buyers with losses, etc. . .

Notice that default clustering is a extreme way of modelling
self-excitement.
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Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Generalized Poisson (Cluster) Loss Model – I

We model the total number of defaults in the pool by t as

Zt :=
n∑

j=1
αjZj(t)

(for integers αj) where Zj are independent Poisson processes.
This is consistent with the Common Poisson Shock framework, where
defaults are linked by a Marshall-Olkin copula, see Lindskog and
McNeil (2003).
If Zj jumps there are as many defaults as the value of αj .
−→ Just one default (idiosyncratic) if αj = 1, or the whole pool in one shot

(total systemic risk) if αj = M, otherwise for intermediate values we
have defaults of whole sectors.
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Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Generalized Poisson (Cluster) Loss Model – II

Modelling the counting process as a sum of Poisson processes may
lead to an infinite number of defaults.
A first solution (GPL) is modifying the counting process so that it
does not exceed the number of names, by simply capping Zt to M,
regardless of cluster structures:

Ct := min(Zt ,M)

That choice works at aggregate loss level, but it does not really go
down towards single names’ dynamics.
−→ The aggregate loss is capped, but we cannot track which single name is

jumping.
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Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Generalized Poisson (Cluster) Loss Model – III

A second solution (GPCL) is forcing clusters to jump only once and
deduce single names defaults consistently.
We introduce a set of independent Poisson processes Ñs for each
cluster s, and we define the indicator Js as given by

Js(t) :=
∏
k∈s

∏
s′3k

1{Ñs′ (t)=0
}

leading to the following single-name and multi-name dynamics

dNk(t) =
∑
s3 k

Js(t−)dÑs(t), dCt =
n∑

j=1
αj
∑
|s|=j

Js(t−)dÑs(t)

That choice is a real top-down model, but it is combinatorially more
complex.

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 18 / 67



Multi-Name Credit Modelling: the case of CDOs Dynamical Loss Models

Implied iTraxx Loss Distribution on 2-Oct-2006

GPL
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Multi-Name Credit Modelling: the case of CDOs Recovery Dynamics and Systemic Risk

Including Systemic Risk within GPL/GPCL models – I

The market since 2008 has been quoting CDOs with prices assuming
that the super-senior tranche would be impacted to a level impossible
to reach with recoveries around 40%.
−→ Only huge losses affect super-senior tranche pricing: at least one fourth

of the pool for iTraxx.
−→ We can assign a small (or a zero) recovery to extreme events (higher

modes of GPL/GPCL model).
We assign a recovery of zero to the systemic (or Armageddon) event,
corresponding to αn = M mode, while we allow a recovery of
R = 40% for other default events.
−→ See Brigo, Pallavicini and Torresetti (2009,2010).
In GPL/GPCL dynamic loss models recovery can be made a function
of default rate C or portfolio loss L, see Brigo Pallavicini and
Torresetti (2007) for more discussion.
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Multi-Name Credit Modelling: the case of CDOs Recovery Dynamics and Systemic Risk

Including Systemic Risk within GPL/GPCL models – II

We introduce the stopping time τ̂ as the minimum time between the
Armageddon jump event or the time when the reduced pool without
Armageddon component has completely defaulted. This is also the
time when the full pool has defaulted.

τ̂ := inf

t :
n∑

j=1
αjZj(t) ≥ M


so that we obtain

Ct = M1{τ̂≤t} + zt1{τ̂>t} , zt :=
n−1∑
j=1

αjZj(t)
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Multi-Name Credit Modelling: the case of CDOs Recovery Dynamics and Systemic Risk

Including Systemic Risk within GPL/GPCL models – III

Now, we assign a recovery of R to all default events but to the
Armageddon event we consider with zero recovery, and after some
algebra we can write the loss process as given by

Lt = (M − R zτ̂ )1{τ̂≤t} + (1− R)zt1{τ̂>t}

Notice that L now depends on z both at full-pool exhaustion time τ̂
and at terminal time t.
In dynamic loss models recovery can be made a function of the
default rate Ct , see Brigo Pallavicini and Torresetti (2007).
−→ Here, we use the above simple methodology to allow losses of the pool

to penetrate beyond 1− R and thus affect severely even the most
senior tranches, in line with market super-senior quotations.
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Multi-Name Credit Modelling: the case of CDOs Recovery Dynamics and Systemic Risk

GPL Calibration through the Crisis
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Counterparty Risk: pricing within Basel III framework Counterparty Risk, Collaterals, Netting Rules

Bilateral Collateralized Credit Valuation Adjustment

We define the (risk-neutral) Bilateral Collateralized Credit Valuation
Adjustment (BCCVA) as

BCCVA(t,T ) := Et [ Π̄(t,T ;C) ]− Et [ Π(t,T ) ]

where the expectation is taken under risk-neutral measure, and
→ Π(t,T ) is the sum of all discounted payoff terms between t and T ;
→ Π̄(t,T ;C) is the same quantity subject to counterparty’s default risk,

and mitigated by collateral margining;
→ Ct is the collateral account used by the margining procedure;

We introduce both the counterparty’s and the investor’s time of
default τC and τI , and the (first) default time as τ := min{τC , τI}.
Funding costs can be added as an additional pricing term
compensating for the costs needed to complete each cash-flow
transaction.
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Counterparty Risk: pricing within Basel III framework Counterparty Risk, Collaterals, Netting Rules

Mitigating Counterparty Credit Risk – I

The ISDA Master Agreement lists two different tools to reduce
exposure:
→ margining with collaterals, namely the right of recourse to some asset

of value that can be sold or the value of which can be applied in the
event of default on the transaction; and

→ close-out netting rules, which state that if a default occurs, multiple
obligations between two parties are consolidated into a single net
obligation.

When we monitor a (symmetric) risk in a bilateral agreement, we
should introduce a “metric” which is shared by both parties.
→ The ISDA Master Agreement defines the term exposure to be the

netted mid-market mark-to-market value of the transaction.
We name such (pre-default) exposure as εt .

εt := Et [ Π(t,T ) ]
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Counterparty Risk: pricing within Basel III framework Counterparty Risk, Collaterals, Netting Rules

Mitigating Counterparty Credit Risk – II

We consider collaterals to be posted on a Collateral Account held by
a Collateral Taker, and we name its value at time t with Ct .
→ If at time t the investor post some collateral we consider that dCt < 0,

the other way round if the counterparty is posting.
In general, margining practice consists in a pre-fixed set of dates
{t0, . . . , tn} during the life of a deal when both parties post or
withdraw collaterals, according to their current exposure, to or from
an account held by the Collateral Taker.
→ The account is usually remunerated at over-night rate
→ We name D(t,T ) the over-night (risk-free) discount factor.

A simple margining rule is the following

Ct0 = Ctn = 0 , Cti = εti , Cu =
εβ(u)

D(β(u), u)

where t0 < u < tN and β(u) is the last update time not after u.
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Counterparty Risk: pricing within Basel III framework Counterparty Risk, Collaterals, Netting Rules

Netting Rules – I

In case of default of one party, the surviving party should evaluate the
transactions just terminated, due to the default event occurrence, to
claim for a reimbursement after the application of netting rules to
consolidate the transactions, inclusive of collateral accounts.
The ISDA Master Agreement defines the term close-out amount to be
the amount of the losses or costs of the surviving party would incur in
replacing or in providing for an economic equivalent, by acting in
good faith and by using commercially reasonable procedures.
We name the close-out amount priced at time t by the investor on
counterparty’s default with εI,t (and εC ,t in the other case, namely
when the investor is defaulting).
→ The close-out amount is not a symmetric quantity w.r.t. the exchange

of the rôle of two parties.
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Counterparty Risk: pricing within Basel III framework Counterparty Risk, Collaterals, Netting Rules

Netting Rules – II

Close-out amounts are calculated after a default event happens, while
exposures depened on the margining procedure which takes place
before any default event. See Brigo, Capponi and Pallavicini (2011)
or Fujii and Takahashi (2011).
→ Expectations required by exposure calculation:

1{u<τC}1{u<τI}Eu[ Π(u,T ) ]

→ Expectations required by close-out amount calculation:

1{u<τI}Eu[ Π(u,T )|{u = τC} ]

Weeber (2009) and Parker (2009) show that close-out amounts rely
on the credit-worthiness of the surviving party, but also on many
other factors.
→ For instance, the costs of terminating, liquidating or re-establishing any

hedge or related trading position, and the costs of funding.
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Cash Flows on Default Event

We consider all the situations may arise on counterparty’s or
investor’s default event (RC and RI are recovery rates).

Π̄(t,T ;C) = 1{τ>T}Π(t,T ) + 1{τ<T}(Π(t, τ) + D(t, τ)Cτ− )

+ 1{τ=τC<T}D(t, τ)1{εI,τ<0}1{Cτ−>0}(εI,τ − Cτ− )

+ 1{τ=τC<T}D(t, τ)1{εI,τ<0}1{Cτ−<0}((εI,τ − Cτ− )− + (εI,τ − Cτ− )+)

+ 1{τ=τC<T}D(t, τ)1{εI,τ>0}1{Cτ−>0}((εI,τ − Cτ− )− + RC (εI,τ − Cτ− )+)

+ 1{τ=τC<T}D(t, τ)1{εI,τ>0}1{Cτ−<0}(RCεI,τ − Cτ− )

+ 1{τ=τI<T}D(t, τ)1{εC,τ>0}1{Cτ−<0}(εC ,τ − Cτ− )

+ 1{τ=τI<T}D(t, τ)1{εC,τ>0}1{Cτ−>0}((εC ,τ − Cτ− )+ + (εC ,τ − Cτ− )−)

+ 1{τ=τI<T}D(t, τ)1{εC,τ<0}1{Cτ−<0}((εC ,τ − Cτ− )+ + RI(εC ,τ − Cτ− )−)

+ 1{τ=τI<T}D(t, τ)1{εC,τ<0}1{Cτ−>0}(RIεC ,τ − Cτ− )
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

BCCVA Master Formula

We obtain, after a little of algebra, the general expression for
collateralized bilateral CVA (LGDk := 1− Rk with k ∈ {C , I}).
→ See Brigo, Capponi, Pallavicini and Papatheodorou (2011).

BCCVA(t,T ;C) = CAM(t,T )− CCVA(t,T ;C) + CDVA(t,T ;C)

with

CAM(t,T ) := −Et
[
1{τ<T}D(t, τ)

(
ετ − 1{τ=τC}εI,τ − 1{τ=τI}εC ,τ

) ]
and

CCVA(t,T ;C) := +Et

[
1{τ=τC<T}D(t, τ)LGDC (ε+I,τ − C+

τ− )+
]

CDVA(t,T ;C) := −Et

[
1{τ=τI<T}D(t, τ)LGDI(ε

−
C ,τ − C−τ− )−

]
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Formulae for Collateralized Bilateral CVA – I

We need a recipe to calculate close-out amounts εI,τC and εC ,τI , that,
in the practice, are approximated from today exposure corrected for
haircuts or add-ons.
→ We could also approximate close-out amounts with the value of a

replacement operation, as in Brigo, Capponi, Pallavicini and
Papatheodorou (2011).

As a first case we consider all the exposures being evaluated at
mid-market, while after this section we show a possible way to relax
such approximation by introducing nested BCCVA approximation.

εI,t
.

= εC ,t
.

= εt

Thus, in such case we obtain for collateralized bilateral CVA

BCCVA(t,T ;C) = −Et
[
1{τ=τC<T}D(t, τ)LGDC (ε+τ − C+

τ− )+
]

− Et
[
1{τ=τI<T}D(t, τ)LGDI(ε

−
τ − C−τ− )−

]
A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 32 / 67



Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Formulae for Collateralized Bilateral CVA – II

If we remove collateralization (Ct = 0), we recover the result of Brigo
and Capponi (2008), and used in Brigo, Pallavicini and
Papatheodorou (2009).

BCVA(t,T ) := BCCVA(t,T ; 0)

=− Et
[
1{τ=τC<T}D(t, τ)LGDCε

+
τ

]
− Et

[
1{τ=τI<T}D(t, τ)LGDIε

−
τ

]
If we remove collateralization (Ct = 0) and we consider a risk-free
investor (τI →∞), we recover the result of Brigo and Pallavicini
(2007), but see also Canabarro and Duffie (2004).

UCVA(t,T ) := BCVA(t,T )|τI→∞

=− Et
[
1{τC<T}D(t, τC )LGDCε

+
τC

]
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Wrong- and Right-Way Risk – I

A working paper issued by the Basel Committee in December 2009
named “Strengthening the resilience of the banking sector”
investigates an extension of the Basel II framework to deal with the
market transformations due to the credit-crunch crisis.
The Basel Committee in December 2010 issued another paper named
“Basel III: A global regulatory framework for more resilient banks and
banking systems” containing the guidelines for counterparty risk
management.
Particularly stressed is the dependence between market and credit
risks, also known as wrong- and right-way risk, which was not
adequately incorporated into the Basel II framework.
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Wrong- and Right-Way Risk – II

Basel II framework defines the supervisory scaling parameter [Annex
IV, 69], which describes in a synthetic way the impact of the
dependency between market and credit risk.

β :=
UCVA

UCVA
0

where UCVA and UCVA
0 are respectively the unilateral credit valuation

adjustment considering and not considering correlations.
Notice that β is usually set equal to 1.4 [Annex IV, 90], while, for
instance, in Brigo and Pallavicini (2007) values greater then 1.4 are
found for relevant portfolio’s examples.
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Wrong- and Right-Way Risk – III
Unilateral credit valuation adjustment for an at-the-money IRS with
ten year maturity and one year coupon tenor for different
credit-spread models. See Brigo and Pallavicini (2007).
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Wrong- and Right-Way Risk – IV

Bilateral CVA for a netted portfolio of IRS with ten year and one year
coupon tenor maturity for different creditworthiness of counterparty
and investor. See Brigo, Pallavicini and Papatheodorou (2009).
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Counterparty Risk: pricing within Basel III framework Risk-Neutral Evaluation of Counterparty Risk

Wrong- and Right-Way Risk – V

Collateralized bilateral CVA for an IRS with ten year maturity and one
year coupon tenor with different choices of interest-rate/credit-spread
correlation (left-side axis) and default-time correlation (right-side
axis) with collateral update intervals of one week (left panel) and
three months (right panel).
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Central Counterparties and Systemic Risk – I

The recent credit crisis has has emphasized the importance of
contagion and systemic risk, defined as the risk that interconnected
financial institution can undermine the stability of financial system as
a whole.
→ See the case of CDO’s where we consider models with default

probability clusters corresponding to joint default of a large number of
entities (sectors) of the economy.

→ Carmona and Crèpey (2010) propose imporatance-sampling techniques
to deal with extreme events and contagions with Monte Carlo
simulations.

Regulators could not anticipated the impact of defaults partly due to
the lack of relevant indicators describing the interaction of the
different components of financial system.
Development of a dynamic and interacting credit risk system may
provide better indicators of systemic risk, and help predicting the
onset of a crisis.
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Central Counterparties and Systemic Risk – II

Cont, Minca and Moussa (2009) propose a network approach to
contagion modeling, where nodes of a random graph are financial
institutions (banks, funds), and edges represent counterparty
exposures.
→ The effect of a central counterparty can be modeled by adding a node

to the CDS network and redirecting all CDS contracts into this node.
→ Central clearing-houses should be properly designed to effectively

reduce systemic risk.
→ Systemic risk depends on network properties and it may have little

correlation with conventional risk measures.
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Central Counterparties and Systemic Risk – III

Dai Pra, Runggaldier, Sartori and Tolotti (2009) develop a dynamic
contagion model via interacting particle systems, which describes the
propagation of financial distress in a network of defaultable financial
market participants.
→ Using limiting arguments, they employ large deviation theory to

quantify losses incurred by a bank in large credit portfolios.
→ The model allows to explain default clustering and to view a

credit-crisis event as a microeconomic phenomenon driven by
endogenous financial indicators.
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Interest-Rate Modelling – I

Classical interest-rate models were formulated to satisfy by
construction no-arbitrage relationships, which allow to hedge
forward-rate agreements in terms of zero-coupon bonds.
For instance, these models predict forward rates of different tenors to
be related to each other by strong constraints via zero-coupon bond
prices. Indeed, for three times T0 < T1 < T2 we get

Ft(T0,T1) =
1

T1 − T0

(Pt(T0)

Pt(T1)
− 1

)
In practice, these no-arbitrage relationships might not hold.
−→ An example is provided by basis-swap spread quotes, which are

significantly non-zero, while they should be equal to zero if such
constraints held.
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Interest-Rate Modelling – II

Basis-swap spread for six-months vs. three-months Euribor rates on a
swap with maturity one year.
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Interest-Rate Modelling – III

Starting from summer 2007, with the spreading of the credit crunch,
market quotes of forward rates and zero-coupon bonds began to
violate the usual no-arbitrage relationships under
−→ the pressure of a liquidity crisis reducing the credit lines, and
−→ the possibility of a systemic break-down suggesting that counterparty

risk could not be considered negligible any more.
The resulting picture, see Henrard (2007), describes a money market
where each forward rate seems to act as a different underlying assets.

Ft(T0,T1)  



F 1m
t (T0,T0 + 1m)

F 3m
t (T0,T0 + 3m)

F 6m
t (T0,T0 + 6m)

F 12m
t (T0,T0 + 12m)
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Interest-Rate Modelling – IV
Forward rates in a multi-curve framework. On the x -axis we have the
rate start-dates expressed in years, while on the y -axis we have the
value of the forward rates. Market data observed on 14 June 2010.
See Pallavicini and Tarenghi (2010).
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Counterparty vs. Liquidity Risk – I

A closer look at the Euro money market makes clear that quoted
instruments are indexed on three reference indices.

1 Eonia is an effective rate calculated from the weighted average of all
overnight unsecured lending transactions undertaken in the interbank
market.

2 Euribors are offered rates at which Euro interbank term deposits of
different maturities are traded by one prime bank to another one.

3 Eurepos are offered rates at which Euro interbank secured money
market transactions are traded.

Eonia and Euribor rates are unsecured, so that they incorporate the
default risk of the counterparty of the transaction, while Eurepo rates
are secured and free of credit risk.
−→ Eurepo rates could seem the natural proxy for risk-free rates.
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Counterparty vs. Liquidity Risk – II

There are many empirical studies supporting the idea that Euribor
rate levels cannot be utterly justified by counterparty credit risk
arguments.
−→ See, for instance, the European Central Bank working paper by

Eisenschmidt and Tapking (2009), or the contribution by Heider et al.
(2009).

There is evidence of a large, persistent and time varying component
of the Euribor-Eurepo spread that cannot not be explained only by
counterparty credit risk.
−→ The sharp rise in the Euribor-Eurepo spread of September 2008 is only

found three-four months later in the CDS spread series, confirming that
a liquidity crisis needs time to evolve as credit crisis.
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Counterparty vs. Liquidity Risk – III

Historical series of Euribor-1y minus Eurepo-1y spread (black line) and
a synthetic index formed by senior one-year CDS of a basket of twelve
representative European banks (red line). Values are in basis points.
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Multiple-Curve Modelling – I

We wish to introduce a parsimonious model which is able to describe
a multi-curve setting by starting from a limited number of (Markov)
processes.
Our proposal is to extend the logic of the HJM framework to describe
with a single family of Markov processes all the yield curves we are
interested in.
In the literature other authors proposed generalizations of the HJM
framework, see for instance Carmona (2004), Andreasen (2006), or
Chiarella (2010).
−→ In particular, in recent papers Martìnez (2009) and Fujii et al. (2010)

extended the HJM framework to incorporate multiple-yield curves and
to deal with foreign currencies.
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Multiple-Curve Modelling – II

Let us summarize the basic requirements the model must fulfill:
1 existence of a risk-free curve, with instantaneous forward rates ft(T )
2 existence of Euribor rates, typical underlying of traded derivatives, with

associated forward rates Ft(T , x)
3 no-arbitrage dynamics of the ft(T ) and the Ft(T , x) (both being

T -forward measure martingales) ensuring the limit case

ft(T ) = lim
x→0

Ft(T , x)

4 possibility of writing both the ft(T ) and the Ft(T , x) as functions of a
common family of Markov processes.

While the first two requisites are related to the set of financial
quantities we are about to model, the last two are conditions we
impose on their dynamics, and will be granted by a befitting choice of
model volatilities.
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Generalized HJM Dynamics – I

We choose, under the risk-free T -forward measure, the following
dynamics.

dft(T ) = σ∗t (T ) · dWt

d(κ(T , x) + Ft(T , x))

κ(T , x) + Ft(T , x)
= Σ∗t (T , x) · dWt

with f0(T ) and F0(T , x) bootstrapped from market quotes, and

σt(T ) := σt(T ;T , 0) , Σt(T , x) :=

∫ T

T−x
du σt(u;T , x)

where σt(u;T , x) is a (row) volatility vector process, and Wt is a
(row) vector of independent Brownian motions.
The set of shifts κ(T , x) must satisfy: κ(T , x) ≈ 1/x if x ≈ 0.

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 52 / 67



Interest-Rate Modelling: splitting of yield curves Multiple-Curve Modelling

Generalized HJM Dynamics – II

Let us analyse more in detail the dynamics of the shifted forward
rates under risk-neutral measure. By integrating the SDE over the
time period [0, t] we get

ln
(
κ(T , x) + Ft(T , x)

κ(T , x) + F0(T , x)

)
=∫ t

0
Σ∗s (T , x) ·

(
dWs −

1
2Σs(T , x) ds +

∫ T

s
du σs(u; u, 0) ds

)

Our goal is substituting the right-hand side with a tractable formula
expressed in term of a family of Markov processes.
−→ This is a requirement similar to the one adopted in the HJM framework

when zero-coupon bond pricing formula is considered.
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Generalized HJM Dynamics – III

To ensure the tractability and a Markovian specification of the model,
we extend the single-curve HJM approach of Ritchken and
Sankarasubramanian (1995), by setting

σt(u;T , x) := ht · (q(u;T , x)g(t, u))

where ht is a matrix adapted process, q is a deterministic vector
function, and g is defined as

g(t, u) := exp
{
−
∫ u

t
dv λ(v)

}
with λ a deterministic vector function.
Further, We add the condition q(u; u, 0) = 1 to ensure that in the
limit case x → 0 we recover the standard HJM separability condition.
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Emerging Driving Markov Processes – I

Hence, by plugging the expression for the volatility, we get

ln
(
κ(T , x) + Ft(T , x)

κ(T , x) + F0(T , x)

)
=

G∗(t,T − x ,T ;T , x) ·
(
Xt + Yt ·

(
G0(t, t,T )− 1

2G(t,T − x ,T ;T , x)

))
where the vectorial deterministic functions G0 and G are defined as

G0(t,T0,T1) :=

∫ T1

T0

dv g(t, v)

G(t,T0,T1;T , x) :=

∫ T1

T0

dv q(v ;T , x)g(t, v)
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Emerging Driving Markov Processes – II

The vector process Xt and the matrix process Yt are defined as

Xt :=
N∑

k=1

∫ t

0
(hsg(s, t))∗ ·

(
dWs + hs

∫ t

s
dv g(s, v) ds

)

Yt :=

∫ t

0
ds (hsg(s, t))∗ · (hsg(s, t))

Thanks to our volatility assumption they result to be Markov, and
their dynamics is given by

dXt = (Y ∗t · 1− λ(t)Xt) dt + h∗t · dWt

dYt = (h∗t · ht − (λ∗(t)Yt + Ytλ(t))) dt

with X0 = 0, Y0 = 0.
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Implying Volatilities for All Rate Tenors – I

The reconstruction formula for forward Euribor rates is the analogous
of standard HJM formula for zero-coupon bonds and it is our main
result.
−→ This important feature is consistent with the requirement of a model

capable to directly describe market relevant quantities.
Further, it is possible to check a posteriori that our reconstruction
formula has as limit case for x → 0 the HJM formula for zero-coupon
bonds.
As an example, we consider a particular model specification within the
extended HJM framework, and we calibrate it to at-the-money
swaption and cap quotes.
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Implying Volatilities for All Rate Tenors – II
We consider the volatility process ht to be in the form

ht := ε(t)hR , ρ := R∗R

where h is a constant vector, R is an upper triangular matrix, and we
allow for a time varying common volatility shape

ε(t) := 1 + (β0 − 1 + β1t)e−β2t

where β0, β1, β2 are three positive constants.
As for the tenor-maturity factors q and κ, we chose a maturity
independent form of the type

q(u;T , x) := exp {−xη} , κ(T , x) := 1/x

Numerical tests are done with a mixture with weight w of two
scenarios (j ∈ {1, 2}) both with two driving factors (i ∈ {1, 2}):{

λj
i , h

j
i , η

j
i ; ρ

j
12;βj

0, β
j
1, β

j
2;
}
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Implying Volatilities for All Rate Tenors – III
At-the-money cap volatilities implied by the mixture model for 1m,
3m, 6m and 12m rate tenors. Market quotes as big dots. On the
x -axis we have the cap maturity, while on the y -axis we have the
implied volatility. Market data observed on 15 February 2011.
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Conclusions

We considered the impact of the credit crisis on pricing models. In
particular we analyse the credit and the interest-rate markets.
We discussed the following features:
−→ impact of systemic risk (super-senior tranche premium, contagion

effects of credit risk, splitting of yield curves);
−→ ubiquity of credit risk (pricing must include CVA, collateral margining,

netting rules,. . . );
−→ complexity of market dynamics (interplay between liquidity and credit

risk, risk-free vs. collateral discounting).

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 61 / 67



Conclusions and Further Developments

Further Developments – I

Credit derivatives:
−→ top-down portfolio loss models with reduced dimensionality consistent

with single-name dynamics;
−→ pricing models with credit contagion for a network counterparties

inclusive of central clearing-houses;
−→ modelling market/credit correlations and their calibration to market

data;
−→ porting CVA, collateral margining, netting rules, close-out amount

evaluation, funding costs from the bank book to the trading book.
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Further Developments – II

Interest-rate derivatives:
−→ interest-rate modelling under collateral measure, namely one

discounting curve for each dervative contract;
−→ investigating the multiple-curve framework to select a realistic

intra-tenor dynamics;
−→ modelling central-bank vs. market rates including monetary policies;
−→ is any more possible modelling interest-rates without credit and

liquidity effects ?

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 63 / 67



Selected References

Selected references – I

Amraoui, S., and Hitier, S. (2008)
Optimal Stochastic Recovery for Base Correlation. BNP Paribas research report
Andreasen, J. (2006)
Stochastic Volatility for Real. Available at http://ssrn.com/abstract=898701

Assefa, S., Bielecki, T. R., Crèpey, S., Jeanblanc, M. (2009)
CVA computation for counterparty risk assessment in credit portfolios.
Available at http://www.defaultrisk.com/pp_model211.htm

Basel Committee on Banking Supervision
“International Convergence of Capital Measurement and Capital Standards A Revised Framework Comprehensive
Version” (2006), “Strengthening the Resilience of the Banking Sector” (2009), “International Framework for Liquidity
Risk Measurement, Standards and Monitoring” (2009), “Basel III: a Global Regulatory Framework for More Resilient
Banks and Banking Systems” (2010).
Available at http://www.bis.org.
Berd, A. (2011)
“Lessons from the Financial Crisis: insights from the defining economic event of our lifetime”. Risk Books.
Bielecki, T., Brigo, D., and Patras, F. (2011)
“Credit Risk Frontiers: subprime crisis, pricing and hedging, CVA, MBS, ratings, and liquidity”. Wiley Bloomberg Press,
Financial Series.
Brigo, D., and Capponi, A. (2008)
Bilateral Counterparty Risk Valuation with Stochastic Dynamical Models and Application to Credit Default Swaps.
Available at http://ssrn.com/abstract=1318024.
Brigo, D., Capponi, A., Pallavicini, A. (2011)
Arbitrage-Free Bilateral Counterparty Risk Valuation under Collateralization and Application to Credit Default Swaps.
Submitted to Mathematical Finance.

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 64 / 67

http://ssrn.com/abstract=898701
http://www.defaultrisk.com/pp_model211.htm
http://www.bis.org
http://ssrn.com/abstract=1318024


Selected References

Selected references – II

Brigo, D., Capponi, A., Pallavicini, A., and Papatheodorou, V. (2011)
Arbitrage-Free Counterparty Risk Valuation under Collateral Margining. Available at
http://ssrn.com/abstract=1744101.
Brigo, D., and Pallavicini, A. (2007)
Counterparty Risk under Correlation between Default and Interest-Rates. In “Numerical Methods for Finance” ed.
Miller, J., Edelman, D., and Appleby, J., Chapman & Hall/Crc Financial Mathematics Series.
Brigo, D., Pallavicini, A., and Papatheodorou, V. (2009)
Bilateral Counterparty Risk Valuation for Interest-Rate Products: Impact of Volatilities and Correlations.
Available at http://ssrn.com/abstract=1507845.
Brigo, D., A. Pallavicini and R. Torresetti (2006)
The Dynamical Generalized-Poisson loss model, Part one. Introduction and CDO calibration. The Dynamical
Generalized-Poisson Loss model, Part two. Calibration stability and spread dynamics extensions. Short version in Risk
Magazine, June 2007 issue, extended version available at ssrn.com.
Brigo, D., A. Pallavicini and R. Torresetti (2007)
Cluster-based extension of the generalized Poisson loss dynamics and consistency with single names. International
Journal of Theoretical and Applied Finance, Vol 10, n. 4, also in A. Lipton and Rennie (Editors), Credit Correlation -
Life After Copulas, World Scientific, 2007.
Brigo, D., A. Pallavicini and R. Torresetti (2010).
“Credit Models and the Crisis: a journey into CDOs, copulas, correlations and dynamic models”. Wiley, Finance.
Reduced version “Credit Models and the crisis or: how I learned to stop worrying and love the CDOs” (2009).
Available at http://ssrn.com/abstract=1529498.
Canabarro, E., Duffie, D. (2004)
Measuring and Marking Counterparty Risk. In “Proceedings of the Counterparty Credit Risk 2005 C.R.E.D.I.T.
conference”, Venice, Sept 22-23, Vol 1.

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 65 / 67

http://ssrn.com/abstract=1744101
http://ssrn.com/abstract=1507845
ssrn.com
http://ssrn.com/abstract=1529498


Selected References

Selected references – III
Carmona, R. (2004)
HJM: a Unified Approach to Dynamic Models for Fixed Income, Credit and Equity Markets. In Paris-Princeton Lectures
on Mathematical Finance, 2004 (Springer).
Carmona, R., and Crèpey, S. (2010)
Particle Methods for the Estimation of Credit Portfolios Loss Distribution. Forthcoming in IJTAF.
Chiarella, C., Maina, S.C. and Nikitipoulos Sklibosios, C. (2010)
Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility. Available at ssrn.com.
Dai Pra, P., Runggaldier, W.J., Sartori, E., Tolotti, M. (2009)
Large portfolio losses: a dynamic contagion model. The Annals of Applied Probability, 19, 1, 347–394.
Eisenschimdt, J. and Tapking, J. (2009)
Liquidity Risk Premia in Unsecured Interbank Money Markets. ECB Working Paper Series, 1025, 3.
Errais, E., Giesecke, K., and Goldberg, L. (2006)
Pricing credit from the top down with affine point processes. Available at
www.stanford.edu/dept/MSandE/people/faculty/giesecke/indexes.pdf

Fujii, M., Shimada, Y., and Takahashi, A. (2010)
Collateral Posting and Choice of Collateral Currency. Available at http://ssrn.com

Fujii, M., and Takahashi, A. (2011)
Collateralized CDS and Default Dependence: implications for the Central Clearing. Available at http://ssrn.com

ISDA
“Credit Support Annex” (1992), ‘Guidelines for Collateral Practitioners”(1998), “Credit Support Protocol” (2002),
“Close-Out Amount Protocol” (2009), “Collateral Dispute Resolution Procedure” (2009), “Margin Survey” (2010),
“Best Practices for the OTC Derivatives Collateral Process” (2010), “Market Review of OTC Derivative Bilateral
Collateralization Practices” (2010).
Available at http://www.isda.org.
Heider, F., Hoerova, M. and Holthausen, C. (2009)
Liquidity Hoarding and Interbank Market Spreads: The Role of Counterparty Risk. Available at ssrn.com.

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 66 / 67

www.stanford.edu/dept/MSandE/people/faculty/giesecke/indexes.pdf
http://ssrn.com
http://ssrn.com
http://www.isda.org


Selected References

Selected references – IV
Henrard, M. (2007)
The Irony in the Derivatives Discounting. Wilmott Magazine, 7, 92–98.
Lindskog, F., and McNeil, A. (2003)
Common Poisson shock models: applications to insurance and credit risk modeling. Astin Bulletin 33, 209-238.
Lipton A., and Rennie A. (2007)
“Credit Correlation: life after copulas”. World Scientific Publishing Company.
Martìnez, T. (2009)
Drift conditions on a HJM model with stochastic basis spreads. Available at
www.risklab.es/es/jornadas/2009/index.html.
Moreni, N. and Pallavicini, A. (2010)
Parsimonious HJM Modelling for Multiple Yield-Curve Dynamics. Submitted to Quantitative Finance. Available at
ssrn.com.
Pallavicini, A. and Tarenghi, M. (2010)
Interest-Rate modelling with Multiple Yield Curves. Available at ssrn.com.
Parker E., and McGarry A. (2009)
The ISDA Master Agreement and CSA: Close-Out Weaknesses Exposed in the Banking Crisis and Suggestions for
Change. Butterworths Journal of International Banking Law, 1.
Torresetti, R., Brigo, D., and Pallavicini, A. (2006).
Implied Correlation in CDO Tranches: A Paradigm to be Handled with Care.
Available at ssrn.com.
Weeber, P., and Robson E. S. (2009)
Market Practices for Settling Derivatives in Bankruptcy. ABI Journal, 9, 34-35, 76-78.

A. Pallavicini (Mediobanca) Post-Crisis Pricing Models SNS Pisa, 2011 67 / 67

ssrn.com

	Multi-Name Credit Modelling: the case of CDOs
	An introduction to CDOs
	Dynamical Loss Models
	Recovery Dynamics and Systemic Risk

	Counterparty Risk: pricing within Basel III framework
	Counterparty Risk, Collaterals, Netting Rules
	Risk-Neutral Evaluation of Counterparty Risk
	Central Counterparties and Systemic Risk

	Interest-Rate Modelling: splitting of yield curves
	The Raising of the Basis
	Multiple-Curve Modelling
	Implied Volatility Term-Structures

	Conclusions and Further Developments

