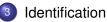
F. Bandi, R. Renò Price and Volatility Co-jumps

Pisa, 15 feb 2012

Seminar outline

Model specification



Data analysis: evidence on co-jumps

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Largest price movements

Day	Return	t-stat	Volatility change	t-stat	Description
03-Aug-1984	3.63	4.28	1.26	8.8	
18-Dec-1984	3.09	3.72	0.34	2.4	
08-Jan-1986	-3.30	-4.56	0.78	5.5	
11-Sep-1986	-5.19	-5.77	1.51	10.6	
16-Oct-1987	-7.35	-6.66	1.06	7.4	
19-Oct-1987	-30.01	-24.26	2.96	20.7	Black Monday
14-Apr-1988	-4.68	-4.27	1.86	13.0	Dollar plunge
17-Mar-1989	-2.75	-4.02	0.98	6.9	
13-Oct-1989	-6.85	-10.74	0.67	4.7	Friday 13th
12-Jan-1990	-3.43	-4.37	1.81	12.6	
22-Jan-1990	-3.47	-3.95	1.42	10.0	
17-Jan-1991	4.43	4.89	0.91	6.3	
21-Aug-1991	2.74	3.99	0.03	0.2	
15-Nov-1991	-4.08	-6.57	1.30	9.1	
16-Feb-1993	-2.52	-4.78	1.38	9.7	

Motivation

Largest price movements (continued)

Day	Return	t-stat	Volatility change	t-stat	Description
04-Feb-1994	-2.33	-5.76	1.62	11.3	
08-Mar-1996	-3.94	-4.92	1.39	9.7	
05-Jul-1996	-2.36	-3.69	0.56	3.9	
27-Oct-1997	-7.80	-7.46	0.64	4.5	Asian Crisis
28-Oct-1997	5.68	5.09	0.75	5.3	
09-Jan-1998	-3.88	-4.08	1.02	7.2	
04-Aug-1998	-3.60	-3.76	1.21	8.5	
31-Aug-1998	-7.30	-5.41	0.47	3.3	Russian crisis
04-Jan-2000	-3.52	-3.99	-0.20	-1.4	
14-Apr-2000	-8.11	-4.90	1.11	7.7	Dot.com crash
03-Jan-2001	5.18	3.90	0.50	3.5	
17-Sep-2001	-5.02	-4.22	0.58	4.0	9/11
20-Jan-2006	-1.93	-3.64	0.67	4.7	
27-Feb-2007	-3.23	-7.07	2.58	18.0	Chinese Correction
29-Sep-2008	-6.93	-4.09	1.76	12.3	Lehman-Brothers default

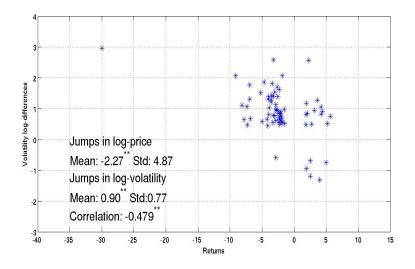
Roberto Renò (Università di Siena)

SNS Pisa, 15 Feb 2012 4 / 37

→ ∃ > < ∃</p>

Motivation

Scatter plot



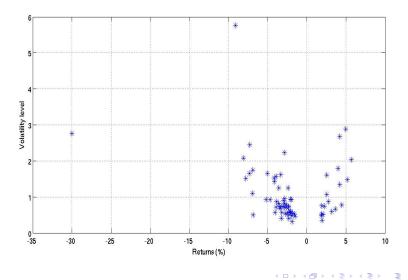
Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012 5 / 37

< 🗇 🕨

Volatility-dependent size



Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012 6 / 37

Some comments

- Large price movements are typically associated with large volatility movements
- Large price movements are more often negative, while large volatility movements are almost always positive
- There appears to be a strong negative correlation between the jump sizes in price and volatility

Previous literature

- Duffie, Pan and Singleton (2000): co-jumps in a parametric affine model, strong negative correlation between jump sizes.
 Estimation methodology: calibration on options.
- Eraker, Johannes and Polson (2003): co-jumps in a parametric affine model with no independent jumps. Estimation methodology: MCMC on return time series.
- Eraker (2004): same as EJP. Estimation methodology: MCMC on joint return and option data
- Todorov and Tauchen (2010): nonparametric evidence on co-jumps between returns and the VIX index.

イロト 不得 トイヨト イヨト

Our approach

- We use only price data (no options, no need of modelling risk premia) but we exploit the availability of intraday data to filter spot volatility estimates.
- We use a flexible nonparametric model with stochastic volatility which allows for both indipendent jumps and co-jumps
- We reconstuct the dynamics, both parametrically and non-parametrically, using a GMM approach based on infinitesimal moments, estimated with the Nadaraya-Watson approach.
- We study the asymptotic properties of the feasible estimators in which spot variances are replaced with estimated variances

The model

$$d(\log p_t) = \mu(\sigma_t)dt + \sigma_t \left\{ \rho(\sigma_t)dW_t^1 + \sqrt{1 - \rho^2(\sigma_t)}dW_t^2 \right\} + c_{r,t}^J dJ_r + c_{r,t}^{JJ} dJ_{r,\sigma}$$
(1)

$$d\xi(\sigma_t^2) = m(\sigma_t)dt + \Lambda(\sigma_t)dW_t^1 + c_{\sigma,t}^J dJ_\sigma + c_{\sigma,t}^{JJ} dJ_{r,\sigma_t}$$

where $\xi(\cdot)$ is an increasingly monotonic function, $W = \{W^1, W^2\}$ is a bivariate standard Brownian motion vector, $J = \{J_r, J_\sigma, J_{r,\sigma^2}\}$ is an independent (of *W*) trivariate vector of mutually independent Poisson processes with intensities $\lambda_r(\sigma_t)$, $\lambda_\sigma(\sigma_t)$, and $\lambda_{r,\sigma}(\sigma_t)$, respectively. The functions $\mu(\cdot)$, $m(\cdot)$, $\Lambda(\cdot)$, $\lambda_r(\cdot)$, $\lambda_\sigma(\cdot)$, $\lambda_{r,\sigma}(\cdot)$ and $\rho(\cdot)$ satisfy mild smoothness conditions and are solely such that a unique, recurrent, strong solution to the system exists.

Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012 10 / 37

ヘロト ヘ回ト ヘヨト ヘヨト

Independent jumps and co-jumps

Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012 11 / 37

A B > A B

- Independent jumps and co-jumps
- State-dependent intensities (the state driving the dynamics is the volatility σ_t)

A B F A B F

< 6 b

- Independent jumps and co-jumps
- State-dependent intensities
 (the state driving the dynamics is the volatility σ_t)
- State-dependent jumps

< ロ > < 同 > < 回 > < 回 >

- Independent jumps and co-jumps
- State-dependent intensities
 (the state driving the dynamics is the volatility σ_t)
- State-dependent jumps
- Time-varying leverage (we provide evidence of more negative leverage corresponding to higher volatility levels)

- Independent jumps and co-jumps
- State-dependent intensities
 (the state driving the dynamics is the volatility σ_t)
- State-dependent jumps
- Time-varying leverage (we provide evidence of more negative leverage corresponding to higher volatility levels)
- Possibly non-affine structures (we also provide evidence that affine models might be misspecified)

Infinitesimal cross-moments

- Assume that we work with a logarithmic variance specification $(\xi(\sigma_t^2) = \log(\sigma_t^2))$ and Gaussian jumps.
- The key element of the identification method we propose is the generic *infinitesimal cross-moment* of order *p*₁, *p*₂ with *p*₁ ≥ *p*₂ ≥ 0, namely

$$\vartheta_{\rho_1,\rho_2}(\sigma) = \lim_{\Delta \to 0} \frac{1}{\Delta} \mathbf{E} \left[\left(\log p_{t+\Delta} - \log p_t \right)^{\rho_1} \left(\log(\sigma_{t+\Delta}^2) - \log(\sigma_t^2) \right)^{\rho_2} | \sigma_t = \sigma \right].$$
(2)

★ ∃ > < ∃ >

Infinitesimal cross-moments

- Assume that we work with a logarithmic variance specification $(\xi(\sigma_t^2) = \log(\sigma_t^2))$ and Gaussian jumps.
- The key element of the identification method we propose is the generic *infinitesimal cross-moment* of order *p*₁, *p*₂ with *p*₁ ≥ *p*₂ ≥ 0, namely

$$\vartheta_{p_1,p_2}(\sigma) = \lim_{\Delta \to 0} \frac{1}{\Delta} \mathbf{E} \left[\left(\log p_{t+\Delta} - \log p_t \right)^{p_1} \left(\log(\sigma_{t+\Delta}^2) - \log(\sigma_t^2) \right)^{p_2} | \sigma_t = \sigma \right].$$
(2)

Volatility moments:

$$\vartheta_{0,1} = m + \vartheta_{0,1}^{Jump}, \tag{3}$$

$$\vartheta_{0,2} = \Lambda^2 + \vartheta_{0,2}^{Jump}, \tag{4}$$

$$\vartheta_{0,\rho_2} = \vartheta_{0,\rho_2}^{Jump} \qquad \rho_2 \ge 3$$
 (5)

with

$$\vartheta_{0,\rho_{2}}^{\textit{Jump}} = \lambda_{r,\sigma} \sum_{j=0}^{\rho_{2}} \begin{pmatrix} p_{2} \\ j \end{pmatrix} \boldsymbol{G}_{0,j} \left(\sigma_{JJ,\sigma}\right)^{j} \left(\mu_{JJ,\sigma}\right)^{\rho_{2}-j} + \lambda_{\sigma} \sum_{j=0}^{\rho_{2}} \begin{pmatrix} p_{2} \\ j \end{pmatrix} \boldsymbol{G}_{0,j} \left(\sigma_{J,\sigma}\right)^{j} \left(\mu_{J,\sigma}\right)^{\rho_{2}-j},$$

where $G_{0,0} = 1$ and, for $g, g_1, g_2 \ge 1$,

æ

with

$$\vartheta_{\mathbf{0},\mathbf{p}_{2}}^{\textit{Jump}} = \lambda_{r,\sigma} \sum_{j=0}^{p_{2}} \begin{pmatrix} p_{2} \\ j \end{pmatrix} \boldsymbol{G}_{0,j} \left(\sigma_{JJ,\sigma}\right)^{j} \left(\mu_{JJ,\sigma}\right)^{p_{2}-j} + \lambda_{\sigma} \sum_{j=0}^{p_{2}} \begin{pmatrix} p_{2} \\ j \end{pmatrix} \boldsymbol{G}_{0,j} \left(\sigma_{J,\sigma}\right)^{j} \left(\mu_{J,\sigma}\right)^{p_{2}-j},$$

where $G_{0,0} = 1$ and, for $g, g_1, g_2 \ge 1$,

For example:

$$\vartheta_{0,3} = \lambda_{r,\sigma} \left(\left(\mu_{JJ,\sigma} \right)^3 + 2 \left(\mu_{JJ,\sigma} \right) \left(\sigma_{JJ,\sigma} \right)^2 \right) \\ + \lambda_{\sigma} \left(\left(\mu_{J,\sigma} \right)^3 + 2 \left(\mu_{J,\sigma} \right) \left(\sigma_{J,\sigma} \right)^2 \right).$$

Roberto Renò (Università di Siena)

2

Genuine cross-moments

We have:

$$\vartheta_{1,1} = \rho \Lambda \sigma + \vartheta_{1,1}^{Jump}$$

Roberto Renò (Università di Siena)

2

イロト イヨト イヨト イヨト

(6)

Genuine cross-moments

We have:

$$\vartheta_{1,1} = \rho \Lambda \sigma + \vartheta_{1,1}^{Jump} \tag{6}$$

and

$$\vartheta_{1+p_1,1+p_2} = \vartheta_{1+p_1,1+p_2}^{Jump} \qquad p_1 > 1 \text{ or } p_2 > 1$$
 (7)

with

$$\vartheta_{\rho_{1},\rho_{2}}^{Jump} = \lambda_{r,\sigma} \sum_{j_{1}=0}^{\rho_{1}} \sum_{j_{2}=0}^{\rho_{2}} \begin{pmatrix} p_{1} \\ j_{1} \end{pmatrix} \begin{pmatrix} p_{2} \\ j_{2} \end{pmatrix} G_{j_{1},j_{2}} (\sigma_{JJ,r})^{j_{1}} (\sigma_{JJ,\sigma})^{j_{2}} (\mu_{JJ,r})^{\rho_{1}-j_{1}} (\mu_{JJ,\sigma})^{\rho_{2}-j_{2}}.$$

Roberto Renò (Università di Siena)

SNS Pisa, 15 Feb 2012 14 / 37

э

Genuine cross-moments (continued)

The cross-moment expressions imply, for instance, that

$$\vartheta_{1,1} = \rho \Lambda \sigma + \lambda_{r,\sigma} \left(\rho_J \sigma_{JJ,r} \sigma_{JJ,\sigma} + \mu_{JJ,r} \mu_{JJ,\sigma} \right),$$

and

$$\begin{split} \vartheta_{2,2} &= \lambda_{r,\sigma} \{ \left(\mu_{JJ,\sigma} \right)^2 \left(\mu_{JJ,r} \right)^2 + \left(\sigma_{JJ,\sigma} \right)^2 \left(\mu_{JJ,r} \right)^2 + \left(\mu_{JJ,\sigma} \right)^2 \left(\sigma_{JJ,r} \right)^2 \\ &+ \left(1 + 2\rho_J^2 \right) \left(\sigma_{JJ,r} \right)^2 \left(\sigma_{JJ,\sigma} \right)^2 + 4\rho_J \mu_{JJ,r} \mu_{JJ,\sigma} \sigma_{JJ,r} \sigma_{JJ,\sigma} \}. \end{split}$$

Roberto Renò (Università di Siena)

SNS Pisa, 15 Feb 2012 15 / 37

A B F A B F

Estimation

Consider a sample of *T* days and *N* intraday knots within each day. Assume availability of closing logarithmic prices (log $p_{t,i}$) and spot volatility estimates (log $\hat{\sigma}_{t,i}^2$) over each day t = 1, ..., T and each knot i = 1, ..., N.

Estimation

Consider a sample of *T* days and *N* intraday knots within each day. Assume availability of closing logarithmic prices (log $p_{t,i}$) and spot volatility estimates (log $\hat{\sigma}_{t,i}^2$) over each day t = 1, ..., T and each knot i = 1, ..., N.

The generic cross-moment estimator $\widehat{\vartheta}_{p_1,p_2}$ is defined as

$$\widehat{\vartheta}_{p_1,p_2}(\sigma) = \frac{\sum_{t=1}^{T_{days}-1} \sum_{i=1}^{N} \mathbf{K}\left(\frac{\widehat{\sigma}_{t,i}-\sigma}{h}\right) (\log p_{t+1,i} - \log p_{t,i})^{p_1} \left(\log \widehat{\sigma}_{t+1,i}^2 - \log \widehat{\sigma}_{t,i}^2\right)^{p_2}}{\Delta \sum_{t=1}^{T_{days}} \sum_{i=1}^{N_{hours}} \mathbf{K}\left(\frac{\widehat{\sigma}_{t,i}-\sigma}{h}\right)},$$
(8)

that is, the frequency of price/volatility returns is daily with subsampling.

Roberto Renò (Università di Siena)

< 日 > < 同 > < 回 > < 回 > < □ > <

Spot variance estimates

- We use intra-daily observations for spot volatility estimation.
- We employ N = 6 knots in the interval 10.45am 3.45pm, each separated by an hour.
- Define one-minute logarithmic returns $r_{t,i,k} = \log p_{t,i,k} \log p_{t,i,k-1}$, for k = 1, ..., 60, over each hour before a knot (thus we start using observations at 9.45*am*).
- The spot volatility estimates are the jump-robust TBPV:

$$\widehat{\sigma}_{t,i}^{2} = \frac{60}{59 - n_{j}} \varsigma_{1}^{-2} \sum_{k=2}^{60} |r_{t,i,k}| |r_{t,i,k-1}| I_{\{|r_{t,i,k}| \le \theta_{t,i,k}\}} I_{\{|r_{t,i,k-1}| \le \theta_{t,i,k-1}\}},$$
(9)

where $\varsigma_1 \simeq 0.7979$.

Theory

Theorem 1. (Consistency.) If $n, T \to \infty$ and $\Delta_{n,T} = T/n \to 0$ so that $h_{n,T}\widehat{L}_{n,T}(y) \xrightarrow{a.s.} \infty$ and $\frac{\Delta_{n,T}}{h_{n,T}^2} \to 0$, then

$$\widehat{\vartheta}_{p_1,0}(\mathbf{y}) \stackrel{p}{\to} \begin{cases} \mu_X(\mathbf{y}) + \lambda_X(\mathbf{y}) \mathbb{E}[\mathbf{c}_X] + \lambda_{XY}(\mathbf{y}) \mathbb{E}[\mathbf{d}_X] & p_1 = 1\\ \sigma_X^2(\mathbf{y}) + \lambda_X(\mathbf{y}) \mathbb{E}[\mathbf{c}_X^2] + \lambda_{XY}(\mathbf{y}) \mathbb{E}[\mathbf{d}_X^2] & p_1 = 2\\ \lambda_X(\mathbf{y}) \mathbb{E}[\mathbf{c}_X^{p_1}] + \lambda_{XY}(\mathbf{y}) \mathbb{E}[\mathbf{d}_X^{p_1}] & p_1 \ge 3 \end{cases},$$

$$\widehat{\vartheta}_{1,1}(\mathbf{y}) \xrightarrow{\mathbf{p}} \rho(\mathbf{y}) \sigma_X(\mathbf{y}) \sigma_Y(\mathbf{y}) + \lambda_{XY}(\mathbf{y}) \mathbb{E}[\mathbf{d}_X \mathbf{d}_Y],$$

and, without loss of generality, for $p_1 \ge p_2 \ge 1$ (with $p_1 > p_2$ if $p_2 = 1$),

$$\widehat{\vartheta}_{p_1,p_2}(\mathbf{y}) \stackrel{p}{\to} \lambda_{XY}(\mathbf{y}) \mathbb{E}[\mathbf{d}_X^{p_1} \mathbf{d}_Y^{p_2}].$$

Roberto Renò (Università di Siena)

<ロト < 回 > < 回 > < 回 > < 回 > … 回

Theorem 2. (Weak convergence.) Let $n, T \to \infty$ and $\Delta_{n,T} = T/n \to 0$ so that $h_{n,T} \widehat{L}_{n,T}(y) \xrightarrow{a.s.}{\rightarrow} \infty$ and $\frac{\Delta_{n,T} \sqrt{\widehat{L}_{n,T}(y)}}{h_{n,T}^{3/2}} \xrightarrow{a.s.}{\rightarrow} 0$. If $h_{n,T}^5 \widehat{L}_{n,T}(y) = O_{a.s.}(1),$

then

$$\sqrt{h_{n,T}\widehat{L}_{n,T}(y)}\left\{\widehat{\vartheta}_{p_1,p_2}(y) - \vartheta_{p_1,p_2}(y) - \Gamma_{\vartheta_{p_1,p_2}}(y)\right\} \Rightarrow \mathbf{N}(0,\mathbf{K}_2\vartheta_{2p_1,2p_2}(y)),$$
with

$$\Gamma_{\vartheta_{p_{1},p_{2}}} = h_{n,T}^{2} \mathbf{K}_{1} \left(\frac{\partial \vartheta_{p_{1},p_{2}}(y)}{\partial y} \frac{\frac{\partial s(y)}{\partial y}}{s(y)} + \frac{1}{2} \frac{\partial^{2} \vartheta_{p_{1},p_{2}}(y)}{\partial^{2} y} \right),$$

where s(dx) is the invariant measure of the Y process.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Identification

Theorem 3. Write $\Psi_{n,k,\phi} = \sqrt{\frac{\log(n)}{k}} + \sqrt{\phi}$. Consider $\widehat{\vartheta}_{p_1,p_2}(.)$ with $(p_1,p_2) = (1,0)$ or (0,1). If

$$\frac{\Psi_{n,k,\phi}}{\Delta_{n,T}} \to 0$$

the consistency result in Theorem 1 holds when replacing $\sigma_{iT/n}^2$ with $\hat{\sigma}_{iT/n}^2$. For any other combination of (p_1, p_2) , if

$$\frac{\Psi_{n,k,\phi}}{\Delta_{n,T}^{1/2}h_{n,T}}\to 0$$

the consistency result in Theorem 1 holds when replacing $\sigma_{iT/n}^2$ with $\hat{\sigma}_{iT/n}^2$. Assume $(p_1, p_2) = (1, 0)$ or (0, 1), if

$$\sqrt{h_{n,T}\widehat{\overline{L}}_{\sigma^2}(T,\sigma^2)}rac{\Psi_{n,k,\phi}}{\Delta_{n,T}}
ightarrow 0,$$

where $\widehat{L}_{\sigma^2}(T, \sigma^2)$ is the estimated occupation density of spot variance process, the weak convergence results in Theorem 2 holds when replacing $\sigma_{iT/n}^2$ with $\widehat{\sigma}_{iT/n}^2$. For any other combination of (p_1, p_2) , if

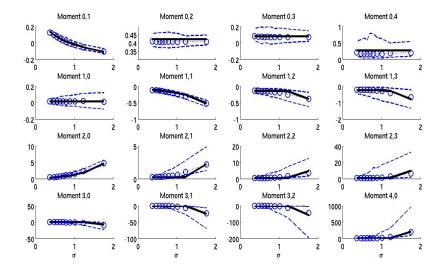
$$\sqrt{h_{n,T}\widehat{\overline{L}}_{\sigma^2}(T,\sigma^2)}\frac{\Psi_{n,k,\phi}}{\Delta_{n,T}^{1/2}h_{n,T}}\to 0,$$

the weak convergence results in Theorem 2 holds when replacing $\sigma_{iT/n}^2$ with $\hat{\sigma}_{iT/n}^2$.

Roberto Renò (Università di Siena)

Identification

Simulations



Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012

イロト イヨト イヨト イヨト

21/37

э

A GMM approach

- The infinitesimal cross-moments introduced here lend themselves to an estimation method akin to pointwise GMM (Hansen, 1982).
- Denote by g₁(σ),..., g_K(σ) the K functions driving the dynamics of the system.
- Consider a set of N cross-moments ∂_{p1,p2}(σ) with N ≥ K for identification.
- The theoretical cross-moments $\vartheta_{p_1,p_2}(\sigma) = f_{p_1,p_2}(g_1(\sigma),\ldots,g_K(\sigma))$ are a mapping f_{p_1,p_2} from the functions $g_1(\sigma),\ldots,g_K(\sigma)$.
- For every value *σ* in the spot volatility range, the *K* vector of estimates (*g*₁(*σ*), ..., *g*_{*K*}(*σ*)) is defined as:

$$(\widehat{g}_{1}(\sigma),\ldots,\widehat{g}_{K}(\sigma)) = \operatorname*{arg\,min}_{(g_{1}(\sigma),\ldots,g_{K}(\sigma))} (\widehat{\vartheta}_{\rho_{1},\rho_{2}}(\sigma) - \vartheta_{\rho_{1},\rho_{2}}(\sigma))^{\top} W(\sigma) (\widehat{\vartheta}_{\rho_{1},\rho_{2}}(\sigma) - \vartheta_{\rho_{1},\rho_{2}}(\sigma))^{\top}$$

A GMM approach: the parametric case

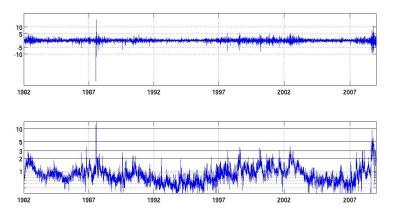
- Assume now to have a parametric specification of the main model.
- Denote by η a vector of *M* parameters.
- Select a number G of knots σ₁,..., σ_G, so that N × G ≥ M for identification.
- Denote by
 *θ*_{p1,p2} the N × G-vector of available estimated moments computed at the knots σ_i with i = 1, ..., G and by θ_{p1,p2}(η) the corresponding N × G-vector of theoretical moments.
- The parametric estimates are now given by:

$$\widehat{\eta} = \arg\min_{\eta} (\widehat{\vartheta}_{\rho_1,\rho_2} - \vartheta_{\rho_1,\rho_2}(\eta))^\top W(\sigma) (\widehat{\vartheta}_{\rho_1,\rho_2} - \vartheta_{\rho_1,\rho_2}(\eta))$$

where $W(\sigma)$ is an $(N \times G) \times (N \times G)$ symmetrical and positive definite weighting matrix.

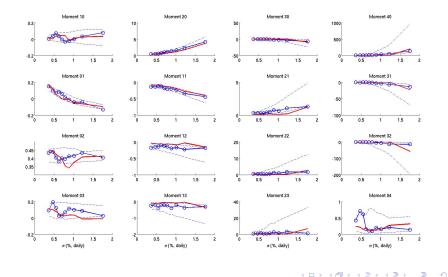
Data

Dataset: all transactions on S&P 500 futures from from April 21, 1982, to February 5, 2009, for a total of 6, 748 trading days.



SNS Pisa, 15 Feb 2012 24 / 37

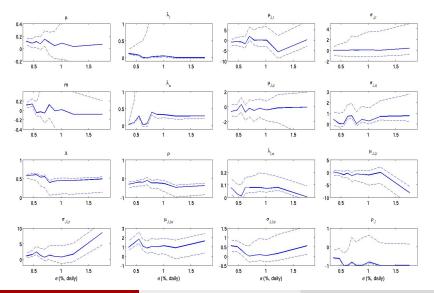
Estimated infinitesimal moments



Roberto Renò (Università di Siena)

SNS Pisa, 15 Feb 2012 25 / 37

Estimated functions



Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012

26/37

A parametric model

$$d\log p_t = \mu_r dt + \sigma_t \left\{ \rho_t dW_t^1 + \sqrt{1 - \rho_t^2} dW_t^2 \right\} + c_{r,t}^J dJ_r + c_{r,t}^{JJ} dJ_{r,\sigma}$$

$$d\log(\sigma_t^2) = (m_0 + m_1\log(\sigma_t^2)) dt + \Lambda dW_t^1 + c_{\sigma,t}^J dJ_\sigma + c_{\sigma,t}^{JJ} dJ_{r,\sigma},$$

$$\rho_t \qquad \qquad = \max(\min(\rho_0 + \rho_1 \sigma_t, 1), -1),$$

$$\{J_r, J_\sigma, J_{r,\sigma}\} \sim Poisson(\lambda_r, \lambda_\sigma, \lambda_{r,\sigma})$$

$$\begin{array}{lll} \boldsymbol{c}_{r,t}^{J} & \sim & \mathcal{N}\left(\boldsymbol{\mu}_{J,r},\sigma_{J,r}^{2}\right) \\ \\ \boldsymbol{c}_{\sigma,t}^{J} & \sim & \mathcal{N}\left(\boldsymbol{\mu}_{J,\sigma},\sigma_{J,\sigma}^{2}\right) \end{array}$$

$$\begin{pmatrix} \mathbf{C}_{r,t}^{\mathcal{J}J} \\ \mathbf{C}_{\sigma,t}^{\mathcal{J}J} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_{\mathcal{J}J,r,0} + \mu_{\mathcal{J}J,r,0}\sigma_t \\ \mu_{\mathcal{J}J,\sigma} \end{pmatrix}, \\ \begin{pmatrix} \left(\sigma_{\mathcal{J}J,r,0} + \sigma_{\mathcal{J}J,r,1}\sigma_t^{\sigma_{\mathcal{J}J,r,2}} \right)^2 & \rho_J \left(\sigma_{\mathcal{J}J,r,0} + \sigma_{\mathcal{J}J,r,1}\sigma_t^{\sigma_{\mathcal{J}J,r,2}} \right) \sigma_{\mathcal{J}J,\sigma} \\ \bullet & \sigma_{\mathcal{J}J,\sigma}^2 \end{pmatrix} \right).$$

Roberto Renò (Università di Siena)

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Estimates

parameter	no cojumps	no independent jumps with cojumps		with cojumps
μ_r	0.0423	0.0631	0.0306	(0.0000, 0.1110)
ρ_0	-0.2280	-0.0977	-0.0988	(-0.2073, 0.0323)
ρ_1	-0.0874	-0.1225	-0.1617	(-0.2901, -0.0863)
<i>m</i> 0	-0.0232	-0.0397	-0.0380	(-0.0853, 0.1581)
<i>m</i> 1	-0.0704	-0.0576	-0.0597	(-0.0710, -0.0347)
۸	0.6048	0.5950	0.5583	(0.3933, 0.5830)
$\mu_{J,r}$	-0.1137	-	1.3948	(-0.4916, 3.0597)
$\mu_{JJ,r,0}$	-	0.5210	-0.0544	(-0.9454, 1.1129)
$\mu_{JJ,r,1}$	-	-1.8976	-1.0072	(-4.3072, 0.0713)
$\sigma_{J,r}$	1.2715	-	0.6818	(0.0000, 1.9688)
$\sigma_{JJ,r,0}$	-	1.7428	0.6246	(0.0000, 1.7976)
$\sigma_{JJ,r,1}$	-	0.1718	2.2469	(0.8738, 4.8970)
$\sigma_{JJ,r,2}$	-	1.8828	1.0863	(0.5747, 2.0345)
$\mu_{J,\sigma}$	0.3498	-	-0.4497	(-1.0585, 0.2008)
$\mu_{JJ,\sigma}$	_	0.7816	1.4428	(0.9511, 1.5641)
$\sigma_{J,\sigma}$	1.2575	—	0.7002	(0.0002, 1.0957)
$\sigma_{JJ,\sigma}$	_	0.4901	0.1084	(0.0105, 0.5329)
ρj	—	-0.6416	-1.0000	(-1.0000, -0.1785)
λ_r	0.1033	_	0.0252	(0.0045, 0.3052)
λ_{σ}	0.0279	_	0.0528	(0.0127, 0.8920)
$\lambda_{r,\sigma}$	_	0.0489	0.0339	(0.0203, 0.0978)

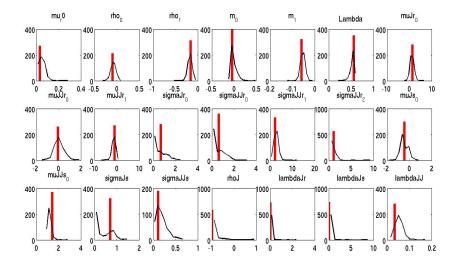
Roberto Renò (Università di Siena)

SNS Pisa, 15 Feb 2012 28 / 37

2

イロト イヨト イヨト イヨト

Simulations

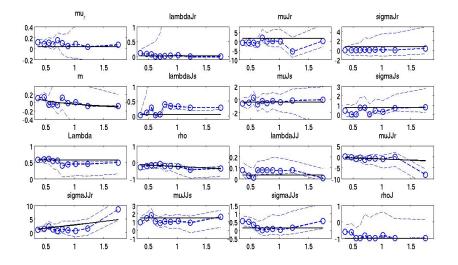


Roberto Renò (Università di Siena)

SNS Pisa, 15 Feb 2012 29 / 37

э

Parametric fitting

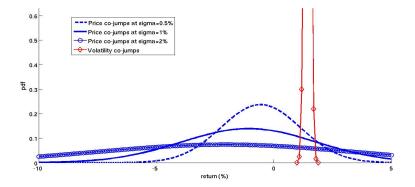


Roberto Renò (Università di Siena)

(3) SNS Pisa, 15 Feb 2012 30/37

< 17 →

Distribution of co-jumps



SNS Pisa, 15 Feb 2012 31 / 37

The leverage effect

$$\rho_{\text{total}} = \frac{\vartheta_{1,1}}{\sigma\Lambda} = \rho + \frac{\lambda_{r,\sigma} \left(\rho_J \sigma_{JJ,r} \sigma_{JJ,\sigma} + \mu_{JJ,r} \mu_{JJ,\sigma}\right)}{\sigma\Lambda} = \rho + \rho_{\text{co-jumps}}.$$

Roberto Renò (Università di Siena)

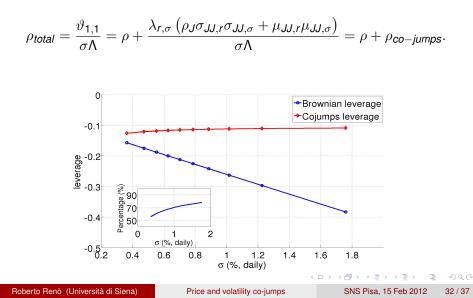
Price and volatility co-jumps

SNS Pisa, 15 Feb 2012 32 / 37

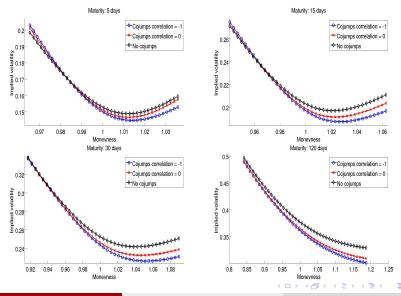
æ

イロト イヨト イヨト イヨト

The leverage effect



Implications for option pricing



Roberto Renò (Università di Siena)

Price and volatility co-jumps

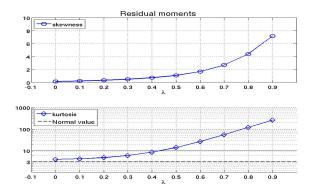
SNS Pisa, 15 Feb 2012 33 / 37

The volatility transformation

Define the system residuals as:

$$\varepsilon_{t,t+\Delta} = \frac{f_{\lambda}(\sigma_{t+\Delta}^2) - f_{\lambda}(\sigma_t^2) - m_{\lambda}(\sigma_t)\Delta}{\Lambda_{\lambda}(\sigma_t)\sqrt{\Delta}},$$

where $f_{\lambda}(\cdot)$ is a Box-Cox transformation.



Roberto Renò (Università di Siena)

Testing for co-jumps

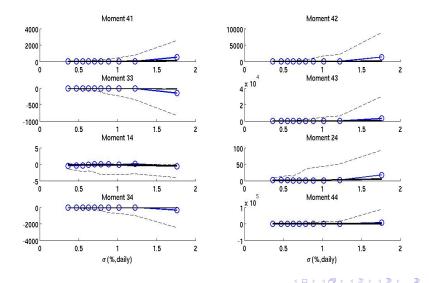
test	value	p-value
J-test $\langle \vartheta_{2,2} \rangle$ $\langle \vartheta_{1,2} \rangle$ $\langle \vartheta_{2,1} \rangle$ $\langle \vartheta_{1,3} \rangle$ $\langle \vartheta_{3,1} \rangle$ $\langle \vartheta_{2,3} \rangle$ $\langle \vartheta_{3,2} \rangle$	239.4 0.2862 -0.0681 0.2669 -0.1091 -0.9861 0.4846 -2.3185 -6.2580	0.20% 0.10% 0.00% 0.00% 0.20% 0.10% 0.10% 0.10%
$$	-0.2300	0.1076

Roberto Renò (Università di Siena)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Overidentifying restrictions



Roberto Renò (Università di Siena)

Price and volatility co-jumps

SNS Pisa, 15 Feb 2012 36 / 37

• Co-jumps are a substantial dynamical feature of asset prices.

- Co-jumps are a substantial dynamical feature of asset prices.
- We uncover their presence in the data by:

(4) (5) (4) (5)

< 6 b

- Co-jumps are a substantial dynamical feature of asset prices.
- We uncover their presence in the data by:
 - Adopting a flexible model specification, which also allows for indipendent jumps

< ロ > < 同 > < 回 > < 回 >

- Co-jumps are a substantial dynamical feature of asset prices.
- We uncover their presence in the data by:
 - Adopting a flexible model specification, which also allows for indipendent jumps
 - Using only price data, that is avoiding the usage of options or VIX

- Co-jumps are a substantial dynamical feature of asset prices.
- We uncover their presence in the data by:
 - Adopting a flexible model specification, which also allows for indipendent jumps
 - Using only price data, that is avoiding the usage of options or VIX
- We also uncover important dynamical features of the data, such as time-varying leverage and nonlinear jump sizes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Co-jumps are a substantial dynamical feature of asset prices.
- We uncover their presence in the data by:
 - Adopting a flexible model specification, which also allows for indipendent jumps
 - Using only price data, that is avoiding the usage of options or VIX
- We also uncover important dynamical features of the data, such as time-varying leverage and nonlinear jump sizes
- We propose a novel approach for estimation of a dynamical (parametric) system, which is based on spot variance estimation and infinitesimal GMM.

< 日 > < 同 > < 回 > < 回 > < 回 > <