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Motivation

Largest price movements

Day Return t-stat Volatility change t-stat Description

03-Aug-1984 3.63 4.28 1.26 8.8
18-Dec-1984 3.09 3.72 0.34 2.4
08-Jan-1986 -3.30 -4.56 0.78 5.5
11-Sep-1986 -5.19 -5.77 1.51 10.6
16-Oct-1987 -7.35 -6.66 1.06 7.4
19-Oct-1987 -30.01 -24.26 2.96 20.7 Black Monday
14-Apr-1988 -4.68 -4.27 1.86 13.0 Dollar plunge
17-Mar-1989 -2.75 -4.02 0.98 6.9
13-Oct-1989 -6.85 -10.74 0.67 4.7 Friday 13th
12-Jan-1990 -3.43 -4.37 1.81 12.6
22-Jan-1990 -3.47 -3.95 1.42 10.0
17-Jan-1991 4.43 4.89 0.91 6.3
21-Aug-1991 2.74 3.99 0.03 0.2
15-Nov-1991 -4.08 -6.57 1.30 9.1
16-Feb-1993 -2.52 -4.78 1.38 9.7
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Motivation

Largest price movements (continued)

Day Return t-stat Volatility change t-stat Description

04-Feb-1994 -2.33 -5.76 1.62 11.3
08-Mar-1996 -3.94 -4.92 1.39 9.7
05-Jul-1996 -2.36 -3.69 0.56 3.9
27-Oct-1997 -7.80 -7.46 0.64 4.5 Asian Crisis
28-Oct-1997 5.68 5.09 0.75 5.3
09-Jan-1998 -3.88 -4.08 1.02 7.2
04-Aug-1998 -3.60 -3.76 1.21 8.5
31-Aug-1998 -7.30 -5.41 0.47 3.3 Russian crisis
04-Jan-2000 -3.52 -3.99 -0.20 -1.4
14-Apr-2000 -8.11 -4.90 1.11 7.7 Dot.com crash
03-Jan-2001 5.18 3.90 0.50 3.5
17-Sep-2001 -5.02 -4.22 0.58 4.0 9/11
20-Jan-2006 -1.93 -3.64 0.67 4.7
27-Feb-2007 -3.23 -7.07 2.58 18.0 Chinese Correction
29-Sep-2008 -6.93 -4.09 1.76 12.3 Lehman-Brothers default
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Motivation

Scatter plot
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Motivation

Volatility-dependent size
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Motivation

Some comments

Large price movements are typically associated with large
volatility movements
Large price movements are more often negative, while large
volatility movements are almost always positive
There appears to be a strong negative correlation between the
jump sizes in price and volatility
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Motivation

Previous literature

Duffie, Pan and Singleton (2000): co-jumps in a parametric affine
model, strong negative correlation between jump sizes.
Estimation methodology: calibration on options.
Eraker, Johannes and Polson (2003): co-jumps in a parametric
affine model with no independent jumps. Estimation methodology:
MCMC on return time series.
Eraker (2004): same as EJP. Estimation methodology: MCMC on
joint return and option data
Todorov and Tauchen (2010): nonparametric evidence on
co-jumps between returns and the VIX index.
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Motivation

Our approach

We use only price data (no options, no need of modelling risk
premia) but we exploit the availability of intraday data to filter spot
volatility estimates.
We use a flexible nonparametric model with stochastic volatility
which allows for both indipendent jumps and co-jumps
We reconstuct the dynamics, both parametrically and
non-parametrically, using a GMM approach based on infinitesimal
moments, estimated with the Nadaraya-Watson approach.
We study the asymptotic properties of the feasible estimators in
which spot variances are replaced with estimated variances
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Model specification

The model

d(log pt ) = µ(σt )dt + σt

{
ρ(σt )dW 1

t +
√

1− ρ2(σt )dW 2
t

}
+cJ

r ,tdJr + cJJ
r ,t dJr ,σ

dξ(σ2
t ) = m(σt )dt + Λ(σt )dW 1

t + cJ
σ,tdJσ + cJJ

σ,tdJr ,σ,

(1)

where ξ(·) is an increasingly monotonic function, W =
{

W 1,W 2} is a
bivariate standard Brownian motion vector, J =

{
Jr , Jσ, Jr ,σ2

}
is an

independent (of W ) trivariate vector of mutually independent Poisson
processes with intensities λr (σt ), λσ(σt ), and λr ,σ(σt ), respectively.
The functions µ(·),m(·),Λ(·), λr (·), λσ(·), λr ,σ(·) and ρ(·) satisfy mild
smoothness conditions and are solely such that a unique, recurrent,
strong solution to the system exists.
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Model specification

System features

Independent jumps and co-jumps

State-dependent intensities
(the state driving the dynamics is the volatility σt )
State-dependent jumps
Time-varying leverage
(we provide evidence of more negative leverage corresponding to
higher volatility levels)
Possibly non-affine structures
(we also provide evidence that affine models might be
misspecified)
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Identification

Infinitesimal cross-moments

Assume that we work with a logarithmic variance specification
(ξ(σ2

t ) = log(σ2
t )) and Gaussian jumps.

The key element of the identification method we propose is the
generic infinitesimal cross-moment of order p1,p2 with
p1 ≥ p2 ≥ 0, namely

ϑp1,p2 (σ) = lim
∆→0

1
∆

E
[
(log pt+∆ − log pt )

p1
(

log(σ2
t+∆)− log(σ2

t )
)p2
|σt = σ

]
.

(2)

Volatility moments:

ϑ0,1 = m + ϑJump
0,1 , (3)

ϑ0,2 = Λ2 + ϑJump
0,2 , (4)

ϑ0,p2 = ϑJump
0,p2

p2 ≥ 3 (5)
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Identification

with

ϑJump
0,p2

= λr,σ

p2∑
j=0

(
p2

j

)
G0,j (σJJ,σ)j (µJJ,σ)p2−j +λσ

p2∑
j=0

(
p2

j

)
G0,j (σJ,σ)j (µJ,σ)p2−j ,

where G0,0 = 1 and, for g,g1,g2 ≥ 1,

G0,2g = (2g − 1)!!,

G0,2g−1 = 0,
Gg1,g2 = (g1 + g2 − 1)ρJGg1−1,g2−1

+(g1 − 1)(g2 − 1)(1− ρ2
J)Gg1−2,g2−2.

For example:

ϑ0,3 = λr ,σ

((
µJJ,σ

)3
+ 2

(
µJJ,σ

) (
σJJ,σ

)2
)

+λσ
((
µJ,σ

)3
+ 2

(
µJ,σ

) (
σJ,σ

)2
)
.
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Identification

Genuine cross-moments

We have:
ϑ1,1 = ρΛσ + ϑJump

1,1 (6)

and

ϑ1+p1,1+p2 = ϑJump
1+p1,1+p2

p1 > 1 or p2 > 1 (7)

with

ϑJump
p1,p2

= λr,σ

p1∑
j1=0

p2∑
j2=0

(
p1

j1

)(
p2

j2

)
Gj1,j2 (σJJ,r )

j1 (σJJ,σ)j2 (µJJ,r )
p1−j1 (µJJ,σ)p2−j2 .
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Identification

Genuine cross-moments (continued)

The cross-moment expressions imply, for instance, that

ϑ1,1 = ρΛσ + λr ,σ
(
ρJσJJ,rσJJ,σ + µJJ,rµJJ,σ

)
,

and

ϑ2,2 = λr ,σ{
(
µJJ,σ

)2 (
µJJ,r

)2
+
(
σJJ,σ

)2 (
µJJ,r

)2
+
(
µJJ,σ

)2 (
σJJ,r

)2

+
(

1 + 2ρ2
J

)
(σJJ,r )2(σJJ,σ)2 + 4ρJµJJ,rµJJ,σσJJ,rσJJ,σ}.
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Identification

Estimation

Consider a sample of T days and N intraday knots within each day.
Assume availability of closing logarithmic prices (log pt ,i ) and spot
volatility estimates (log σ̂2

t ,i ) over each day t = 1, . . . ,T and each knot
i = 1, . . . ,N.

The generic cross-moment estimator ϑ̂p1,p2 is defined as

ϑ̂p1,p2 (σ) =

∑Tdays−1
t=1

∑N
i=1 K

(
σ̂t,i−σ

h

)
(log pt+1,i − log pt,i )

p1
(
log σ̂2

t+1,i − log σ̂2
t,i
)p2

∆
∑Tdays

t=1

∑Nhours
i=1 K

(
σ̂t,i−σ

h

) ,

(8)
that is, the frequency of price/volatility returns is daily with

subsampling.
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Identification

Spot variance estimates

We use intra-daily observations for spot volatility estimation.
We employ N = 6 knots in the interval 10.45am − 3.45pm, each
separated by an hour.
Define one-minute logarithmic returns
rt ,i,k = log pt ,i,k − log pt ,i,k−1, for k = 1, . . . ,60, over each hour
before a knot (thus we start using observations at 9.45am).
The spot volatility estimates are the jump-robust TBPV:

σ̂2
t ,i =

60
59− nj

ς−2
1

60∑
k=2

|rt ,i,k ||rt ,i,k−1|I{|rt,i,k |≤θt,i,k}I{|rt,i,k−1|≤θt,i,k−1},

(9)
where ς1 ' 0.7979.
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Identification

Theory

Theorem 1. (Consistency.) If n,T →∞ and ∆n,T = T/n→ 0 so that
hn,T L̂n,T (y)

a.s.→ ∞ and ∆n,T

h2
n,T
→ 0, then

ϑ̂p1,0(y)
p→


µX (y) + λX (y)E[cX ] + λXY (y)E[dX ] p1 = 1
σ2

X (y) + λX (y)E[c2
X ] + λXY (y)E[d2

X ] p1 = 2
λX (y)E[cp1

X ] + λXY (y)E[dp1
X ] p1 ≥ 3

,

ϑ̂1,1(y)
p→ ρ(y)σX (y)σY (y) + λXY (y)E[dX dY ],

and, without loss of generality, for p1 ≥ p2 ≥ 1 (with p1 > p2 if p2 = 1),

ϑ̂p1,p2(y)
p→ λXY (y)E[dp1

X dp2
Y ].
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Identification

Theorem 2. (Weak convergence.) Let n,T →∞ and

∆n,T = T/n→ 0 so that hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

√
L̂n,T (y)

h3/2
n,T

a.s.→ 0. If

h5
n,T L̂n,T (y) = Oa.s.(1),

then

√
hn,T L̂n,T (y)

{
ϑ̂p1,p2(y)− ϑp1,p2(y)− Γϑp1,p2

(y)
}
⇒ N(0,K2ϑ2p1,2p2(y)),

with

Γϑp1,p2
= h2

n,T K1

∂ϑp1,p2 (y)

∂y

∂s(y)
∂y

s(y)
+

1
2
∂2ϑp1,p2 (y)

∂2y

 ,

where s(dx) is the invariant measure of the Y process.
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Identification

Theorem 3. W rite Ψn,k,φ =
√

log(n)
k +

√
φ. Consider ϑ̂p1,p2 (.) with (p1, p2) = (1, 0) or

(0, 1). If
Ψn,k,φ

∆n,T
→ 0,

the consistency result in Theorem 1 holds when replacing σ2
iT/n with σ̂2

iT/n. For any
other combination of (p1, p2), if

Ψn,k,φ

∆
1/2
n,T hn,T

→ 0,

the consistency result in Theorem 1 holds when replacing σ2
iT/n with σ̂2

iT/n. Assume
(p1, p2) = (1, 0) or (0, 1), if √

hn,T L̂σ2 (T , σ2)
Ψn,k,φ

∆n,T
→ 0,

where L̂σ2 (T , σ2) is the estimated occupation density of spot variance process, the
weak convergence results in Theorem 2 holds when replacing σ2

iT/n with σ̂2
iT/n. For

any other combination of (p1, p2), if√
hn,T L̂σ2 (T , σ2)

Ψn,k,φ

∆
1/2
n,T hn,T

→ 0,

the weak convergence results in Theorem 2 holds when replacing σ2
iT/n with σ̂2

iT/n.
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Identification

Simulations
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Estimation

A GMM approach

The infinitesimal cross-moments introduced here lend themselves
to an estimation method akin to pointwise GMM (Hansen, 1982).
Denote by g1(σ), . . . ,gK (σ) the K functions driving the dynamics
of the system.
Consider a set of N cross-moments ϑ̂p1,p2(σ) with N ≥ K for
identification.
The theoretical cross-moments ϑp1,p2(σ) = fp1,p2(g1(σ), . . . ,gK (σ))
are a mapping fp1,p2 from the functions g1(σ), . . . ,gK (σ).
For every value σ in the spot volatility range, the K vector of
estimates (ĝ1(σ), . . . , ĝK (σ)) is defined as:

(ĝ1(σ), . . . , ĝK (σ)) = arg min
(g1(σ),...,gK (σ))

(ϑ̂p1,p2 (σ)−ϑp1,p2 (σ))>W (σ)(ϑ̂p1,p2 (σ)−ϑp1,p2 (σ))
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Estimation

A GMM approach: the parametric case

Assume now to have a parametric specification of the main model.
Denote by η a vector of M parameters.
Select a number G of knots σ1, . . . , σG, so that N ×G ≥ M for
identification.
Denote by ϑ̂p1,p2 the N ×G-vector of available estimated moments
computed at the knots σi with i = 1, ...,G and by ϑp1,p2(η) the
corresponding N ×G-vector of theoretical moments.
The parametric estimates are now given by:

η̂ = arg min
η

(ϑ̂p1,p2 − ϑp1,p2 (η))>W (σ)(ϑ̂p1,p2 − ϑp1,p2 (η))

where W (σ) is an (N ×G)× (N ×G) symmetrical and positive
definite weighting matrix.
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Data analysis: evidence on co-jumps

Data

Dataset: all transactions on S&P 500 futures from from April 21, 1982,
to February 5, 2009, for a total of 6,748 trading days.
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Data analysis: evidence on co-jumps

Estimated infinitesimal moments
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Data analysis: evidence on co-jumps

Estimated functions
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Data analysis: evidence on co-jumps

A parametric model

d log pt = µr dt + σt

{
ρtdW 1

t +
√

1− ρ2
t dW 2

t

}
+ cJ

r ,tdJr + cJJ
r ,tdJr ,σ

d log(σ2
t ) =

(
m0 + m1 log(σ2

t )
)

dt + ΛdW 1
t + cJ

σ,tdJσ + cJJ
σ,tdJr ,σ,

ρt = max(min(ρ0 + ρ1σt ,1),−1),

{Jr , Jσ, Jr ,σ} ∼ Poisson(λr , λσ, λr ,σ)

cJ
r ,t ∼ N

(
µJ,r , σ

2
J,r

)
cJ
σ,t ∼ N

(
µJ,σ, σ

2
J,σ

)
(

cJJ
r ,t

cJJ
σ,t

)
∼ N

((
µJJ,r ,0 + µJJ,r ,0σt

µJJ,σ

)
,( (

σJJ,r ,0 + σJJ,r ,1σ
σJJ,r,2
t

)2
ρJ
(
σJJ,r ,0 + σJJ,r ,1σ

σJJ,r,2
t

)
σJJ,σ

� σ2
JJ,σ

))
.
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Data analysis: evidence on co-jumps

Estimates

parameter no cojumps no independent jumps with cojumps

µr 0.0423 0.0631 0.0306 (0.0000, 0.1110 )
ρ0 −0.2280 −0.0977 −0.0988 (−0.2073, 0.0323 )
ρ1 −0.0874 −0.1225 −0.1617 (−0.2901,−0.0863 )
m0 −0.0232 −0.0397 −0.0380 (−0.0853, 0.1581 )
m1 −0.0704 −0.0576 −0.0597 (−0.0710,−0.0347 )
Λ 0.6048 0.5950 0.5583 (0.3933, 0.5830 )
µJ,r −0.1137 − 1.3948 (−0.4916, 3.0597 )
µJJ,r,0 − 0.5210 −0.0544 (−0.9454, 1.1129 )
µJJ,r,1 − −1.8976 −1.0072 (−4.3072, 0.0713 )
σJ,r 1.2715 − 0.6818 (0.0000, 1.9688 )
σJJ,r,0 − 1.7428 0.6246 (0.0000, 1.7976 )
σJJ,r,1 − 0.1718 2.2469 (0.8738, 4.8970 )
σJJ,r,2 − 1.8828 1.0863 (0.5747, 2.0345 )
µJ,σ 0.3498 − −0.4497 (−1.0585, 0.2008 )
µJJ,σ − 0.7816 1.4428 (0.9511, 1.5641 )
σJ,σ 1.2575 − 0.7002 (0.0002, 1.0957 )
σJJ,σ − 0.4901 0.1084 (0.0105, 0.5329 )
ρJ − −0.6416 −1.0000 (−1.0000,−0.1785 )
λr 0.1033 − 0.0252 (0.0045, 0.3052 )
λσ 0.0279 − 0.0528 (0.0127, 0.8920 )
λr,σ − 0.0489 0.0339 (0.0203, 0.0978 )
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Data analysis: evidence on co-jumps

Simulations
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Data analysis: evidence on co-jumps

Parametric fitting
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Data analysis: evidence on co-jumps

Distribution of co-jumps
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Data analysis: evidence on co-jumps

The leverage effect

ρtotal =
ϑ1,1

σΛ
= ρ+

λr ,σ
(
ρJσJJ,rσJJ,σ + µJJ,rµJJ,σ

)
σΛ

= ρ+ ρco−jumps.
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Data analysis: evidence on co-jumps

Implications for option pricing
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Data analysis: evidence on co-jumps

The volatility transformation

Define the system residuals as:

εt ,t+∆ =
fλ(σ2

t+∆)− fλ(σ2
t )−mλ(σt )∆

Λλ(σt )
√

∆
,

where fλ(·) is a Box-Cox transformation.
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Data analysis: evidence on co-jumps

Testing for co-jumps

test value p-value

J-test 239.4 0.20%
< ϑ2,2 > 0.2862 0.10%
< ϑ1,2 > -0.0681 0.00%
< ϑ2,1 > 0.2669 0.00%
< ϑ1,3 > -0.1091 0.00%
< ϑ3,1 > -0.9861 0.20%
< ϑ2,3 > 0.4846 0.10%
< ϑ3,2 > -2.3185 0.10%
< ϑ3,3 > -6.2580 0.10%
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Data analysis: evidence on co-jumps

Overidentifying restrictions
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Data analysis: evidence on co-jumps

Conclusions

Co-jumps are a substantial dynamical feature of asset prices.

We uncover their presence in the data by:

Adopting a flexible model specification, which also allows for
indipendent jumps
Using only price data, that is avoiding the usage of options or VIX

We also uncover important dynamical features of the data, such
as time-varying leverage and nonlinear jump sizes
We propose a novel approach for estimation of a dynamical
(parametric) system, which is based on spot variance estimation
and infinitesimal GMM.
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