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Introduction

We review two papers on the causes of the Flash Crash by Easley, De Prado and O’Hara:

@ “The Microstructure of Flash Crash” (Working Paper November 2010)

@ “Flow Toxicity and Volatility in High Frequency World” (Working Paper February 2011)
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Q Flash Crash caused by severe mismatch in liquidity: liquidity providers withdraw from the
market or even turned into liquidity takers.
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Q Flash Crash caused by severe mismatch in liquidity: liquidity providers withdraw from the
market or even turned into liquidity takers.

@ Liquidity dries up due to “toxic” (unbalanced) order flows.
Q Authors propose a measure of order toxicity, the VPIN metric.

0 They show that this VPIN measure anticipated the Flash Crash.
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Recent trends in market structure

@ Since 2009, HF trading firms (=~ 2% of total 20, 000 US firms) accounted for over 70% of
U.S. equity trading volume.
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Recent trends in market structure

@ Since 2009, HF trading firms (=~ 2% of total 20, 000 US firms) accounted for over 70% of
U.S. equity trading volume.

@ Many of these HF firms are in the business of “liquidity provision”, i.e. acting as market
maker (MM) to “position takers”.

@ HF MM generally do not make directional bets, but rather strive to earn razor thin margins
on large numbers of trades.

@ Their ability to do so depends on limiting their position risk by:

@ hold very small or zero inventory positions
@ have high inventory turnover (5 or more times a day)
@ control “adverse selection”

@ = Allow them to operate with very low capital, essentially using their speed of trading to
control inventory risk.
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Market Microstructure Models

@ Microstructure models view trading as a game between liquidity providers (or MM) and
liquidity takers (or traders or position takers).
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Market Microstructure Models

@ Microstructure models view trading as a game between liquidity providers (or MM) and
liquidity takers (or traders or position takers).

@ MMs set the spread to be compensated for:

@ operational costs
@ inventory costs
@ adverse selection costs

@ Adverse selection arises because some traders may have better information on the future
price than MM.

@ The Authors define toxicity “the expected loss from trading with better informed
counterparties”.
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Sketch of a simple model of adverse selection
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Market Microstructure Models

@ If § = 1/2, it can be shown that the bid-ask spread simplified to

_ap e
s_au_,’_ze[s i]

where § and § are price predictions of informed trades in case of good and bad news.
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@ If § = 1/2, it can be shown that the bid-ask spread simplified to

_ap e
s_au_,’_ze[s i]

where § and § are price predictions of informed trades in case of good and bad news.

@ The probability that a trade in a period is information-based (PIN) is

ap
ap + 2¢

PIN =

where apu + 2¢ is the arrival rate for all orders and ay is the arrival rate for
information-based orders.

@ PIN is thus a measure of the fraction of orders that arise from informed traders relative to
the total order flow.

@ MMs need to correctly estimate their PIN in order to identify the optimal spread s.
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PIN estimation: VPIN theory

@ Standard approach to estimate the PIN is to employ maximum likelihood estimation to get
the unobservable parameters «, i, € and then derive PIN from those estimates.
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PIN estimation: VPIN theory

@ Standard approach to estimate the PIN is to employ maximum likelihood estimation to get
the unobservable parameters «, i, € and then derive PIN from those estimates.

@ The Authors propose a more direct volume-based approach observing that:

the expected trade imbalance is:

2

VS — VEH g

where VS is the sell volume and V& is the buy volume.

and the expected arrival rate of total trades V = VS + VB is:

E[V] = ap + 2¢

@ Hence, the Volume-Synchronized Probability of Informed Trading VPIN is

" vE—VE
piN= o on T [VPoVRL g
ap + 2¢ \% nv
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VPIN in practice

S0 Ve - ve|
nv

VPIN =

@ Sample the prices in “Volume-time”, i.e. in intervals having equal amount of volume V.
They choose V = 1/50 of the average daily volume and n = 50 = “daily” VPIN (on average).
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nv

VPIN =

@ Sample the prices in “Volume-time”, i.e. in intervals having equal amount of volume V.
They choose V = 1/50 of the average daily volume and n = 50 = “daily” VPIN (on average).

@ Volume Classification (in buy VB and sell VS volume).

Trade classification is always problematic: more so in the HF world of electronic order book
where applying standard tick-based algos over individual transactions would be “futile”.

= propose to aggregate trades over short time intervals A (e.g. 1-minute) and sign the
aggregated volume in that time interval as the corresponding transaction:
An aggregated transaction is buy if either

i Pi>Pi_a or
ii PF=Pi_an andthe transactioni — A was also a buy.
Otherwise, the transaction is a sell.
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VPIN of E-mini S&P500 over 3 years
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Figure 2 - VPIN metric between January 15 2008 and October 30™ 2010
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VPIN: Historical PDF and CDF
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Figure 3 - The empirical CDF of the VPIN metric
as fitted through a log-normal distribution

Order toxicity and liquidity crisi

11 May 2011

11/17



12/17

11 May 2011

Aunaeqoud
© ) ' :
S S o
] ] 00ZL OL/ELSS
F 000 OL/ELS
e F oozL ouzLs
F 0010 OL/ZL/S
P [ 00°ZL 0L/ LG
F oo ouius
F 001 OL/OLS
F 000 01/0L/S
F 0oz ov/ers
- 00:0 O1/6/5
F 00ZL OL/8/S
00:0 OV/8/S
[ 00ZL OL/LIS
F 0000 O4/L/G
00ZL OL/9/S
F 00:0 01/9/5
{3 (ot F 00ZL OL/S/S
0010 0V/S/S
e i [ 00TL OL/V/S
F 00:0 04/¥/S
F oozl ov/ers
[ 00°0 0L/€/S
F 00ZL oL/zrs
- 0oi0 01/2/S
F 00ZL OL/LIS
F 00:0 01/ /S
[ 00ZL OL/OEN
F 000 OL/0ErH
00ZL OL/6ZHY
F 000 o6z
[ 00ZL oLz
000 OUBZIY
[ 00ZL oLizEn
000 OV/LZIY

=
=i
1

Time

e
8
>
5
=
2
g
o

[==——E-mini S&P500 ——VPIN = = = COR(FIN)|
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Point of caution: Impact trade aggregation interval
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Figure 8(b) - VPIN Estimated with Ten-Second Time Bars

Figure 8(a) - VPIN estimated with One-Minute Time Bars
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VPIN of EUR/USD and T-Note
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Conclusions

@ Flash Crash causes:

@ When flow toxicity unexpectedly rose (unusually unbalanced order flow as measured
by VPIN) HF MMs face large losses.

@ Inventory may grow beyond their risk limits, forcing them to withdraw from the market.

@ If they keep accumulating losses, at some point they may capitulate, dumping their
inventory to take the loss.

Hence, extreme toxicity can transform liquidity providers into liquidity consumers.

@ By measuring imbalance in order flow (toxicity) the proposed VPIN metric should predict
liquidity crisis (as claimed for the Flash Crash).

@ Authors proposed solution to liquidity crisis: Creating an exchange future with the VPIN
metric as underlying.
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