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Definition

We consider a financial market consisting of a riskless asset
Bt and a risky asset St with the following dynamics:

dBt = rBt;
dSt = St(µdt + σdWt).

Definition
Let θt be the number of shares owned by an agent at time t,
Xt its total wealth and Πt = θtSt

Xt
the proportion of wealth

invested in the stock.

The self-financing condition is given by

dXt =
Xt − θSt

Bt
dBt + θdSt.
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The problem

From now on we will assume r = 0.

Given a utility function U(·), we want to maximize the
expected utility from terminal wealth on a certain time
horizon T:

sup
θ

E[U(XT)].

The problem can be completely solved in the case of a
utility function with constant Relative Risk Aversion, i.e.
when U(x) = x1−γ

1−γ for γ > 0, γ 6= 1 or when U(x) = log x.

Solution
The best strategy is to keep the the proportion Πt constant
and equal to µ

γσ2 , where γ is the relative risk-aversion.
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H-J-B approach

Definition
The value function of the utility maximization problem is
defined by

v(t, x) = sup
θ∈Θ

E[U(Xt,x
T )]

Dynamic Programming Principle

v(t, x) = sup
θ∈Θ[t,t+h]

Et,x[v(t + h,Xθt+h)]
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H-J-B approach

If we assume regularity of v(·, ·) and X·, we get from Itô’s
formula

Et,x[v(t + h,Xθt+h)] = v(t, x) + E
∫ t+h

t

∂v
∂t

(s,Xθs ) +(Lθv)(s,Xθs )ds,

where Lθ is the Kolmogoroff operator associated to the
process Xθ· .
Thus, we have

∂v
∂t

(t, x) + (Lθv)(t, x) ≤ 0

and the equality is obtained for the optimal strategy.
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H-J-B approach

Hamilton-Jacobi-Bellman equation

∂v
∂t

(t, x) + sup
θ∈Θ
{(Lθv)(t, x)} = 0;

v(T, x) = U(x).

In Merton’s problem, the dynamics of Xt are given by

dXt = XtΠt(µdt + σdWt)

and, considering Πt as the control process,

Lπ = xπµ
∂

∂x
+

1
2

x2π2σ2 ∂
2

∂x2 .
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H-J-B approach

The optimal proportion is given by

Πt = − µ

σ2
vx(t,Xt)

Xtvxx(t,Xt)
,

where v(·, ·) solves

vt(t, x)− 1
2

v2
x(t,x)

vxx(t,x)
µ2

σ2 = 0;

v(T, x) = U(x).

For U(x) = x1−γ

1−γ , the solution is given by

v(t, x) = exp{β(T − t)}U(x), β = µ2(1−γ)
2σ2γ

and Πt = µ
γσ2 .

For U(x) = log x, the solution is given by
v(t, x) = β(T − t) + U(x), β = µ2

2σ2 and Πt = µ
σ2 .
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Duality approach

Observation

C(x) = {X ≤ x+
∫ T

0
θsdSs : θ· ∈ Θ} = {X : EQ[X] ≤ x, ∀Q ∈M},

whereM is the set of martingale measures.

Definition

Let Ũ(·) be the Legendre-Fenchel transformation defined as

Ũ(y) = sup
x>0

[U(x)− xy] = U(I(y))− yI(y),

where I = (U′)−1.
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Duality approach

Observation

E[U(X)] ≤ E[Ũ(yZ)] + E[yZX] ≤ E[Ũ(yZ)] + xy,

where X ∈ C(x) and Z = dQ
dP for Q ∈M.

The dual problem is given by infy>0,Z∈M{E[Ũ(yZ)] + xy}. Let
ŷ, Ẑ be the minimizers and set X̂ = I(ŷẐ).
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Duality approach

Merton considers a complete market, thusM = {Q}. The
corresponding change of measure is given by

Z = exp
{
−µ
σ

WT −
1
2
µ2

σ2 T
}
.

The optimal ŷ is such that E[ZI(ŷZ)] = x.

If U(x) = x1−γ

1−γ , then I(y) = y−
1
γ .

X̂t = EQ[(ŷZ)−
1
γ |Ft] = x exp

{
µ

γσ
WQ

t −
1
2

µ2

(γσ)2 t
}
,

i.e.
dX̂t = X̂t

µ

γσ
dWQ

t = X̂t
µ

γσ2σdWQ
t = X̂t

µ

γσ2
dSt

St
.
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Myopic Utility

The mainstream literature assumes a frictionless market.

Suppose
dSt = St(µtdt + σtdWt).

Set Z = exp{−
∫ T

0
µt
σt

dWt − 1
2

∫ T
0
µ2

t
σ2

t
dt} and ŷ such that

E[ZI(ŷZ)] = x.

Observation

E[U(XπT )] ≤ E[U(I(ŷZ))− ŷZ(I(ŷZ)− XπT )] ≤ E[U(I(ŷZ))].
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Logarithmic case

When U(x) = log x, we have I(y) = 1
y and ŷ(x) = 1

x .
Πt = µt

σ2
t

is the optimal proportion. Indeed, XπT = I(ŷZ) and

v(0, x) = log x + E
∫ T

0
1
2
µ2

s
σ2

s
ds.

The logarithmic utility is called myopic utility.
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Transaction costs

If we take into account transaction costs, it is
impossible to keep the Merton proportion in stocks.
This would imply infinite trading, thus infinite loss.
Davis and Norman in 1990 prove the existence of a
“no-trading region”.

We consider proportional transaction costs. To this end, we
assume the existence of a bid-ask spread, i.e. St is the ask
price and (1− λ)St is the bid price, for some λ ∈ (0, 1).
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The problem

We suppose that an agent can invest in a bond Bt = 1 and
in a stock with ask price

dSt = St(µdt + σdWt)

and bid price (1− λ)St.

Definition
A trading strategy is a (predictable) finite variation process
(θ0

t , θt) with (θ0
0, θ0) = (x, 0)

Let θt = θ↑t − θ
↓
t , where θ↑t and θ↓t are two increasing

processes, which do not grow at the same time. Then the
self-financing condition becomes

dθ0
t = (1− λ)Stdθ

↓
t − Stdθ

↑
t .
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Definition
A self-financing strategy is called admissible if its liquidation
wealth process

Xθ
0,θ

t = θ0
t + θ+

t (1− λ)St − θ−t St

is a.s. nonnegative.

Our objective is to maximize

E[log Xθ
0,θ

T ]

over all possible trading strategies (θ0, θ).



On portfolio
optimization in
markets with

frictions

Marko Weber

Transaction
costs

Shadow price

Definition

A shadow price is a continuous semimartingale S̃ evolving
within the bid-ask spread [(1− λ)St, St] such that the
log-optimal portfolio for the frictionless market with price S̃
exists, is of finite variation and θt only increases (resp.
decreases) on {S̃t = St} (resp. {S̃t = (1− λ)St}).

Modified problem

Given a shadow price S̃, we call an admissible strategy
(ψ0

t , ψt) optimal for the modified problem problem if it
maximizes

E[log X̃θ
0
t ,θt

T ],

where X̃θ
0
t ,θt

T = θ0
T + θT S̃T .
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Shadow price

Proposition

Let S̃ be a shadow price and let (θ0
t , θt) be the optimal

strategy for the frictionless market with stock S̃ and
logarithmic utility. Then (θ0

t , θt) is also optimal for the
modified problem.

Strategy
Find a shadow price;
solve the problem using techniques for the frictionless
case.



On portfolio
optimization in
markets with

frictions

Marko Weber

Transaction
costs

Shadow price

Proposition

Let S̃ be a shadow price and let (θ0
t , θt) be the optimal

strategy for the frictionless market with stock S̃ and
logarithmic utility. Then (θ0

t , θt) is also optimal for the
modified problem.

Strategy
Find a shadow price;
solve the problem using techniques for the frictionless
case.



On portfolio
optimization in
markets with

frictions

Marko Weber

Transaction
costs

Doubly reflected geometric Brownian Motion

We will define a process with values in [1, s̄], which has the
same dynamics as S in (1, s̄).

Define the stopping time (ρn), (σn) and the processes (mt),
(Mt)

ρ0 = 0;
σn = inf{t ≥ ρn−1 : St

mt
≥ s̄}, where mt = infρn−1≤u≤t Su on

[ρn−1, σn];
ρn = inf{t ≥ σn : St

Mt
≤ 1

s̄ }, where Mt = supσn≤u≤t Su on
[σn, ρn].

We can continuously extend the process m as mt := Mt
s̄ on

∪n[σn, ρn].
The process ( St

mt
) is a doubly reflected geometric Brownian

Motion for the interval [1, s̄].



On portfolio
optimization in
markets with

frictions

Marko Weber

Transaction
costs

Smooth pasting

Let g : [1, s̄]→ [1, (1− λ)s̄] be a C2 function such that g′ > 0
and

g(1) = g′(1) = 1;
g(s̄) = (1− λ)s̄ and g′(s̄) = 1− λ.

Proposition

Define S̃t = mtg( St
mt

). Then S̃ is an Itô process with dynamics

dS̃t = g′
(

St

mt

)
dSt +

1
2mt

g′′
(

St

mt

)
(dSt)2

and takes values in [(1− λ)S, S].

Idea: Apply Itô’s formula assuming mt constant. The smooth
pasting conditions ensure that the diffusion term of S̃t

St
vanishes when St = mt or St = s̄mt.
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The function g

Suppose St0 = mt0 = 1 and Πt0 = θt0 St0
θ0

t0
+θt0 St0

= 1
1+θ0

t0
/θt0

.

Suppose the process St moves upwards until, at time t1, St1
reaches the level s̄, where Πt1 = 1

1+θ0
t0
/(θt0 s̄)

touches the

selling boundary of the no-trading region.
On the interval [t0, t1], we have S̃t = g(St). Since

dg(St)
g(St)

=

(
µg′(St)St + σ2

2 g′′(St)S2
t

g(St)

)
dt +

(
σg′(St)St

g(St)

)
dWt,

the corresponding log-optimal proportion is given by

g(St)(µg′(St)St + σ2

2 g′′(St)S2
t )

σ2g′(St)2S2
t

.

It has to equate Π̃t = θt S̃t
θ0

t +θt S̃t
= g(St)

c+g(St)
, where c = θ0

t0/θt0 on
[t0, t1].
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The function g

This leads to the following equation for g:

g′′(s) =
2g′(s)2

c + g(s)
− 2µg′(s)

σ2s
.

With the boundary conditions g(1) = g′(1) = 1, the solution
is

g(s) =
−cs + (2π − 1 + 2cπ)s2π

s− (2− 2π + c(2π − 1))s2π ,

where π = µ
σ2 6= 1

2 .
After imposing g(s̄) = (1− λ)s̄ and g′(s̄) = 1− λ, we can
determine s̄ and c.
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The result

Assume π = µ
σ2 /∈ {1

2 , 1}. Let c be such that

(
c

(2π − 1 + 2cπ)(2− 2π − c(2π − 1))

) 1−π
π−1/2

− 1
1− λ

(2π − 1 + 2cπ)2 = 0.

Set

s̄ =
(

c
(2π − 1 + 2cπ)(2− 2π − c(2π − 1))

)1/(2π−1)

and

g(s) =
−cs + (2π − 1 + 2cπ)s2π

s− (2− 2π + c(2π − 1))s2π .
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The result

Then S̃t = mtg( St
mt

) is a shadow price with log-optimal trading
strategy given by

θ0
t = θ0

ρk−1

(
mt

mρk−1

) 1
c+1

on
⋃

k

[ρk−1, σk];

θ0
t = θ0

σk

(
mt

mσk

) (1−λ)̄s
c+(1−λ)̄s

on
⋃

k

[σk, ρk]

and θ0
t = cmtθt.

The fraction Π̃t = 1
1+c/g( St

mt
)

is kept in the no-trading region

[ 1
1+c ,

1
1+c/((1−λ)̄s) ] and so the fraction Πt = 1

1+c mt
St

is kept in the

no-trading region [ 1
1+c ,

1
1+c/s̄ ].
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The optimal growth rate

Definition
We call optimal growth rate the limit

lim sup
T→∞

1
T

E[log Xθ
0,θ

T ],

where (θ0, θ) is the optimal strategy.

We have to compute lim supT→∞
1
T E[
∫ T

0
µ̃2( St

mt
)

2σ̃2( St
mt

)
dt]. Define the

stopping time τ = inf{t > 0 : St
mt
≤ 1} and the measure

ν(A) = 1
E[τ ]E

∫ τ
0 1A( St

mt
)dt for A ∈ B[1, s̄].
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The optimal growth rate

From Itô’s formula we have

E
[
ϕ

(
St

mt

)]
= ϕ(1) + E

∫ t

0
µϕ′

(
St

mt

)
St

mt
+ σ2

ϕ′′( St
mt

) S2
t

m2
t

2
ds

+ E[ϕ′(0)Lt − ϕ′(s̄)Ut]

and then∫
µϕ′(s)s + σ2ϕ

′′(s)s2

2
ν(ds) + ϕ′(0)l− ϕ′(s̄)u = 0.

Evaluating in ϕ1(s) = s1− 2µ
σ2 and ϕ2(s) = 1

µ−σ2/2 log s allows
us to compute l and u. Assuming µ(ds) = p(s)ds, by
integration by parts we get conditions on p(s), which lead to
the following solution

ν(ds) =
2π − 1

s̄2π−1 − 1
s2π−21[1,̄s](s)ds.
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The optimal growth rate

The optimal growth rate is given by∫ s̄

0

µ̃2(s)
2σ̃2(s)

ν(ds) =
µ2

2σ2 −
(

3σ3

2
7
2

π2(1− π)2
)2/3

λ2/3 + O(λ4/3).

Similar results can be obtained for the power utility case.
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Motivation

Order book
Suppose that in the order book the quotes are distributed
around the price St with density ρ(x). If an agent wants to
buy h units of stocks, it will have to pay up to a relative price
s given by

h =
∫ s

1
ρ(x)dx.

There is no permanent effect of the trade on the price, so
the loss is given by

Sl(h) = S
∫ s

1
xρ(x)dx− hS = S

∫ s

1
(x− 1)ρ(x)dx.
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Motivation

Let us consider a time interval of length ∆t, during which the
relative quotes have density ρ(x)dx∆t around St. If an agent
wants to buy h∆t units of stock, it will face a loss of Stl(h)∆t.

In our framework we consider dynamics of the following type
for the wealth process

dXt = θtdSt − Stl(θ̇t)dt,

where −Stl(θ̇t)dt represents the liquidity cost.
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The problem

We assume that the wealth process has dynamics

dXt = θtdSt − λKt(θ̇t)2dt,

for a proper process Kt.

When Kt = St
θt

, the dynamics of Xt are

dXt = Xt(Πt(µdt + σdWt)− λΠt

(
θ̇t

θt

)2

dt).

When Kt = S2
t

Xt
, the dynamics of Xt are

dXt = Xt(Πt(µdt + σdWt)− λΠ2
t

(
θ̇t

θt

)2

dt).
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H-J-B equation

We want to maximize E[U(Xθt )] for utilities with constant
Relative Risk Aversion. Assume Kt = St

θt
.

The H-J-B equation is

vt + max
u
{vx
(
xyµ− λxyu2)

+ vy
(
y(1− y)(µ− yσ2) + yu + λy2u2)+

1
2

vxxx2y2σ2

+
1
2

vyy(y2(1− y)2σ2) + vxyxy2(1− y)σ2} = 0,

with final condition v(T, x, y) = U(x).
The control process is θ̇t

θt
, the state processes are Xt and Πt.
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H-J-B equation

Consider the case U(x) = log x.

Assume that the value function is of the form
v(t, x, y) = β(T − t) + z(y) + log x. This function does no
longer satisfy the final condition, but will give us a candidate
for a “long-run optimum”.
With such a value function, the corrisponding optimum
control u has to satisfy the following Abel differential
equation:

(−β + yµ− 1
2

y2σ2) + (−4β + 2yµ+ 2µ− 2yσ2)yλu

+ (1− 4λβy + 4λyµ− 2λyσ2)λyu2

+ 2λ2y2u3 + λy2(1− y)2σ2uy = 0.
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2
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Limit for small λ

Assume β ≈ µ2

2σ2 − cλδ. For a given λ, let uλ be the solution
of the Abel equation and define wλ =

√
λuλ.

Then we get

w0(y) =
1√
2σ

(
µ
√

y
−√yσ2

)
.

Let yλ the value such that uλ(yλ) = 0. If yλ = π + o(λ
1
4 ), then

by some continuity argument we get

δ =
1
2
, c =

1√
2π
π2(1− π)2σ3.
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2σ2 − cλδ. For a given λ, let uλ be the solution
of the Abel equation and define wλ =

√
λuλ.

Then we get

w0(y) =
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.
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The optimal growth rate

When we consider Kt = S2
t

Xt
, we get

δ =
1
2
, c =

1√
2
π2(1− π)2σ3.

Similar results are valid in the power utility case.
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Long-run optimality

We still have to prove that our candidate function is indeed a
long-run optimal strategy, i.e.

lim sup
T→∞

E[U(XθT)]
v(T, x, y)

= 1.

We would like to find a duality relation

E[U(XT)] ≤ v(T, x, y) ≤ z(T, x, y)

such that the distance among E[U(XT)] and z(T, x, y) gets
narrow when T →∞.
Unfortunately, the martingale measure for Xθt depends on
the strategy θ.
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Comparison of impact of different frictions

Optimal growth rate
With transaction cost

µ2

2σ2 −
32/3

27/3

(
σ3π2(1− π)2)2/3

λ2/3.

With liquidity cost

µ2

2σ2 −
1

21/2

(
σ3π2(1− π)2)λ1/2.



On portfolio
optimization in
markets with

frictions

Marko Weber

Liquidity

Bibliography

Davis, M.H.A and Norman, A.R.: Portfolio selection with
transaction costs, Mathematics of Operations Research,
15(4), 1990, pp.676-713.

Gerhold, S., Muhle-Karbe, J. and Schachermayer, W.:
The dual optimizer for the growth-optimal portfolio under
transaction costs, Finance and Stochastics, 2011. To
appear.

Merton, R.C.: Lifetime portfolio selection under
uncertainty: the continuous time case, Rev. Econ. Stat.
51, 1969, pp.247-257.



On portfolio
optimization in
markets with

frictions

Marko Weber

Liquidity

Bibliography

Rogers, L.C.G. and Singh, S.: The cost of illiquidity and
its effects on hedging, Mathematical Finance, 20, 2010,
pp.597-615.

Shreve, S. and Soner, H.M.: Optimal investment and
consumption with transaction costs, The Annals of
Applied Probability, 4, 1994, pp.609-692.

Zhang, L. and Du, Z.: On the Reflected Geometric
Brownian Motion with two barriers, Intelligent
Information Management, 2, 2010, pp.295-298.


	Summary
	Merton's problem
	Merton's problem

	Transaction costs
	Transaction costs

	Liquidity
	Liquidity


