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Securities, Derivatives and Trading Strategies Market Securities

Market Securities – I

We start with the simple setting of a market with default-free
securities.
−→ We later add counterparty credit risk, funding costs and

collateralization.
We assume that the market quotes the prices of some securities we
name {S1

t , . . . ,Sn
t }.

When holding a security we may face the possibility to receive or pay
a quantity of cash.
−→ The owner of a bond receives coupons on a regular basis.
−→ Share holders receive dividends over time.
−→ Many bilateral contracts consists in a strip of random cash flows.
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Securities, Derivatives and Trading Strategies Market Securities

Market Securities – II

We name {γT1 , . . . , γTN} the coupons, dividends or cash flows
received or paid while holding a security
We define the cumulative dividend process as

Dt :=
N∑

i=1
γTi1{Ti≤t}

The profits and losses achieved holding a security are described by the
gain process, which is defined as

Gt := St + Dt
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Securities, Derivatives and Trading Strategies Market Securities

Trading Portfolios and Total Wealth – I

A trading strategy in the market securities consists in holding a
portfolio of securities.
We name {q1

t , . . . , qn
t } the quantities of each security held in the

portfolio.
−→ At each time the trader may change the composition of the portfolio.
−→ The quantities qi

t may be either positive or negative.
The total wealth realized by the strategy can be computed by taking
into account the profit and losses along time.
If we can trade only on times {t0 = 0, t1, . . . , tm = t}, we can write
the total wealth as

Wt :=
n∑

i=1
qi

t0S
i
t0 +

m∑
k=1

n∑
i=1

qi
tk−1

(G i
tk
− G i

tk−1
)
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Securities, Derivatives and Trading Strategies Market Securities

Trading Portfolios and Total Wealth – II

We can substitute the definition of gain process in the total wealth
formula to highlight how the dividends contribute to it.

Wt =
n∑

i=1
qi

t0S
i
t0 +

m∑
k=1

n∑
i=1

qi
tk−1

(
S i

tk
− S i

tk−1
+

N∑
i=1

γTi1{tk−1<Ti≤tk}

)

A simple example of trading strategy is entering a position and never
changing it, namely qt does not depend on time.
−→ In this case we should obtain that the total wealth is simply the sum of

the gain processes of each security times their quantities.
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Securities, Derivatives and Trading Strategies Market Securities

Trading Portfolios and Total Wealth – III

The wealth of a constant-quantity trading strategy

Wt
.=

n∑
i=1

qiS i
t0 +

n∑
i=1

qi
m∑

k=1

(
S i

tk
− S i

tk−1
+

N∑
i=1

γTi1{tk−1<Ti≤tk}

)

=
n∑

i=1
qiS i

t0 +
n∑

i=1
qi

(
S i

tm
− S i

t0 +
N∑

i=1
γTi1{Ti≤tm}

)

=
n∑

i=1
qi (S i

tm
+ Dtm

)
=

n∑
i=1

qiG i
t
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Self-Financing Trading Strategies – I

An interesting class of trading strategies is given by the self-financing
strategies.
The wealth process of a self financing strategy is always equal to the
liquidation value of the portfolio.

Wt
.=

n∑
i=1

qi
tS i

t

Which is the consequence of such constraint on the quantities qt ?
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Self-Financing Trading Strategies – II

We focus on the increment in the wealth process over time.

Wtk −Wtk−1 =
n∑

i=1
qi

tk−1
(S i

tk
− S i

tk−1
+ Di

tk
− Di

tk−1
)

If we require that the strategy is self-financing, we get

Wtk −Wtk−1 =
n∑

i=1
(qi

tk
S i

tk
− qi

tk−1
S i

tk−1
)

If we equate the two expressions, we obtain
n∑

i=1
qi

tk
S i

tk
=

n∑
i=1

qi
tk−1

(
S i

tk
+ Di

tk
− Di

tk−1

)
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Self-Financing Trading Strategies – III

Thus, the quantities are selected so that
−→ dividends are re-invested in the strategy;
−→ further cash is not required and no cash outflow is generated.
In this sense the strategy is self-financing.
Some examples are:
−→ A strategy in shares of a company. Every time a dividend is paid the

trader must buy more shares. This strategy is self-financing.
−→ A strategy in a zero-coupon bond. At maturity the zero-coupon bond

pays the notional, but we cannot re-invest in it since the contract is
terminated. We need a second security to build a self-financing
strategy.
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Trading Strategies in Continuous Time

In the following we use a continuous-time notation, and we express
the cumulative dividend process as

Dt := D0 +
∫ t

0
dπu , πt :=

N∑
i=1

γTi1{Ti≤t}

while the wealth process for the trading strategy qt is given by

Wt := q0 · S0 +
∫ t

0
qu · dGu

where the internal products is in security space. If the strategy is
self-financing we write

Wt
.= qt · St
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Securities, Derivatives and Trading Strategies Funding and Discounting

Treasury Bank Account – I

Implement a trading strategies we need to access some cash-paying
(and cash-receiving) securities to fund (and to invest) dividends.
−→ For instance, if we have to pay at a future time T a unit of cash, we

can buy a zero-coupon bond paying such cash at T .
Since trading strategies have their own trading horizons, we wish to
access cash-paying (and cash-receiving) securities without a maturity
time.
In practice we need a bank account.
−→ We can enter into a bank account by paying one unit of cash at

inception, and receiving it back at any later time along with a
compensation.

−→ On the other hand, we can also get one unit of cash at inception to
pay it back at a later time along with a fee.

Do bank accounts exist in the market ?
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Securities, Derivatives and Trading Strategies Funding and Discounting

Treasury Bank Account – II

On the market we have saving accounts, but their are intended for
retail operations.
Traders may access a special bank account, named the Treasury Bank
Account (TBA), which is managed by the bank treasury department.
−→ The TBA is not a real security traded on the market, but it behaves as

a security from the point of view of traders.
−→ The TBA is implemented by the treasury by issuing bonds, using

collateral portfolios, accessing saving accounts, etc. . .
The compensation rate, received when borrowing cash, and the fees,
required when lending cash, are decided by the treasury.
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Securities, Derivatives and Trading Strategies Funding and Discounting

Treasury Bank Account – III

If we assume that the lending and borrowing rates are the same,
name them rt , we can calculate the price process Bt of the TBA as
the solution of

dBt = rtBt dt , B0 = 1

namely

Bt = exp
{∫ t

0
du ru

}
In the following we assume that the TBA is one of the security used
to implement trading strategies.
−→ We discuss again this assumption when funding costs are introduced.
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Securities, Derivatives and Trading Strategies Funding and Discounting

Price Deflators

When we say that the price process of a security is given by St we are
thinking of liquidating the security to obtain an amount of cash equal
to St .
−→ Cash behaves as a unit of measure for prices.
Yet, we cannot access cash without paying fees or receiving
compensations, since we lend and borrow cash by means of the TBA.
Thus, to take into account the cost of money, we need to express the
wealth processes in term of the TBA, namely

W̄t := Wt
Bt

where W̄ is the deflated wealth.
How can we define deflated price and cumulative dividend processes ?
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Securities, Derivatives and Trading Strategies Funding and Discounting

Invariance of Self-Financing Trading Strategies – I

We require that the property of a trading strategy of being
self-financing is invariant under deflation.
−→ We define the deflated price and cumulative dividend processes to

ensure this property.
If qt is a self-financing strategy (Wt

.= qt · St) we can write

W̄t = Wt
Bt

= qt · S̄t

where we define the deflated price process as

S̄t := St
Bt

The definition of the deflated cumulative dividend process is less
obvious, since we must consider that dividends are paid over time,
and the TBA value depends on time too.

A. Pallavicini Funding Costs 29 May 2015 20 / 86



Securities, Derivatives and Trading Strategies Funding and Discounting

Invariance of Self-Financing Trading Strategies – II

Starting from the definition of deflated wealth, we can write

W̄t = W̄0 +
∫ t

0

(
dWu
Bu
−WuruBu du

)
= q0 · S0 +

∫ t

0
qu ·

(
dGu
Bu
− SuruBu du

)
= q0 · S0 +

∫ t

0
qu ·

(
dSu
Bu
− SuruBu du + dDu

Bu

)
= q0 · S0 +

∫ t

0
qu · dḠu

where we define the deflated cumulative dividend and gain processes

D̄t := D0 +
∫ t

0

dDu
Bu

, Ḡt := S̄t + D̄t
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Securities, Derivatives and Trading Strategies Funding and Discounting

Invariance of Self-Financing Trading Strategies – III

If the bank account is risky, as in a foreign-currency account, the
definition of the deflated processes must take into account the
covariation of the dividend process with the deflator.
For a generic positive process Yt (deflator) we can follow Duffie
(2001) to write:

W Y
t = q0 · SY

0 +
∫ t

0
qu · dGY

u , GY
t := SY

t + DY
t

where we define the deflated price and cumulative dividend processes

SY
t := YtSt , DY

t := Y0D0 +
∫ t

0
(Yu dDu + d〈Y ,D〉u)
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Arbitrages – I

In efficient markets securities are always traded at their fair value.
−→ Investors can possibly obtain higher returns only by purchasing riskier

investments.
The possibility “to make money from nothing without risks” should
be excluded from the set of possible trading strategies.
−→ We name arbitrages such strategies.
A more formal definition of arbitrage is needed to going on.
We refer again to Duffie (2001) for the huge literature on arbitrages
and their relationship with martingale pricing.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Arbitrages – II
We introduce a probability space (Ω,F ,P) endowed with
−→ the standard filtration F := (Ft)t≥0 generated by the security price

processes, and
−→ the physical probability measure P representing the actual distribution

of supply-and-demand shocks on security prices.
We can define arbitrages as a self-financing trading strategy qt whose
wealth at inception time t is non-positive, namely

Wt ≤ 0

while at maturity T it is never negative, and it is strictly positive in
some state, so that we can write

WT ≥ 0 , P {WT > 0 } > 0

To avoid arbitrages we can impose some conditions on the wealth
process W .
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Equivalent Martingale Pricing – I

Given the TBA as price deflator, we can ensure the absence of
arbitrages, if we can find a measure Q, equivalent to the physical
measure P, such that the deflated gain process Ḡt is a martingale
under such measure.
−→ The measure Q is known as risk-neutral measure.
Arbitrages are forbidden even if we use a generic deflator Yt .
−→ In this case the measure QY depends on the choice of the deflator, and

it is known as equivalent martingale measure.
The reverse is not true in general.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Equivalent Martingale Pricing – II

Under suitable technical conditions on the trading strategy qt , the
martingale condition allows us to write

E
[

W̄T | Ft
]

= W̄t +
∫ T

t
E
[

qu · dḠu | Ft
]

= W̄t

where the expectations are taken under the risk-neutral measure.
If qt is an arbitrage, we have Wt ≤ 0 and

WT ≥ 0 =⇒ W̄T ≥ 0 =⇒ W̄t = E
[

W̄T | Ft
]
≥ 0

on the other hand, the equivalence between the measures implies

P {WT > 0 } > 0 =⇒ Q {WT > 0 } > 0 =⇒ Q
{

W̄T > 0
}
> 0

leading to W̄t > 0 which contradicts the hypothesis.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Equivalent Martingale Pricing – III
If we assume the existence of a risk-neutral measure, we can price
market securities with maturity date T by exploiting the martingale
condition of deflated gain processes.

Ḡt = E
[

ḠT | Ft
]

Then, we can expand the gain process to obtain the arbitrage-free
pricing formula under Q-expectation

St = Bt E

[
ST
BT

+
∫ T

t

dDu
Bu
| Ft

]

or for a generic deflator Yt under QY-expectation

St = 1
Yt

EY

[
YT ST +

∫ T

t
(Yu dDu + d〈Y ,D〉u) | Ft

]
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – I

We can extend pricing formulae to derivative securities not traded on
the market.
We consider a derivative with price process Vt and cumulative
dividend process Qt .
In order to replicate the derivative in terms of market securities, we
can implement a strategy qt to invest (or to fund) the dividend s
received (or paid) by the derivative, namely

Qt
.= Wt − qt · St

Furthermore, we require that at maturity the price of the constituents
of the strategy is equal to the price of the derivative.

VT
.= qT · ST
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – II

The derivative price can be calculated at any time from the market
security prices.
We consider a trading strategy q′ which invests in the market
securities as the strategy qt and shorts one unit of the derivative,
namely

q′t := (qt ,−1)

The wealth generated by such strategy is given by

W ′
t = q0 · S0 − V0 +

∫ t

0
(qu · dGu − dVu − dQu) = qt · St − Vt

so that we can conclude that the strategy q′ is self-financing with null
final wealth, W ′

T = 0.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – III

If we require absence of arbitrages, we obtain that at any time t < T
we must have

W ′
T ≥ 0 =⇒ W ′

t ≥ 0 =⇒ qt · St ≥ Vt

On the other hand, we can consider the strategy (−qt , 1) leading to

qt · St ≤ Vt

Thus, we have at any time t up to matuirty T that

Vt = qt · St

We can write that the derivative gain process is equal to the wealth
generated by the replicating strategy qt .

Wt = Vt + Qt
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – IV

If we assume the existence of a risk-neutral measure for the market
securities, we have that the deflated gain process of the derivative is a
martingale too, leading to the pricing equation

Vt = Bt E

[
VT
BT

+
∫ T

t

dQu
Bu
| Ft

]

or for a generic deflator Yt under QY-expectation

Vt = 1
Yt

EY

[
YT VT +

∫ T

t
(Yu dQu + d〈Y ,Q〉u) | Ft

]

which can be solved once a terminal condition for VT is selected.
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Arbitrage-Free Pricing Counterparty Credit Risk

Market and Enlarged Filtrations – I

The next element we add to the pricing framework is the possibility of
default of one of the counterparties of the contract.
How can we deal with the default event under the risk-neutral
measure?
−→ We need to describe the filtration to adopt to calculate the risk-neutral

expectations.
Market risks for contracts with defaultable counterparties arise from
the uncertainty both in default probabilities and in the default times.
−→ We could add risks specific of the underlying asset and recoveries as

well.
As a first step we introduce the market filtration Ft representing all
the observable market quantities but the default events.
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Arbitrage-Free Pricing Counterparty Credit Risk

Market and Enlarged Filtrations – II

Then, we define the default events of the counterparty τC and of the
investor τI along with the first default time

τ := τC ∧ τI

We define the enlarged filtration G containing also the default
monitoring.
−→ See Bielecki and Rutkowski (2001) for details.

Gt := Ft ∨HC
t ∨HI

t ⊇ Ft

Hk
t := σ({τk ≤ u} : u ≤ t) , k ∈ {C , I}
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Arbitrage-Free Pricing Counterparty Credit Risk

Market and Enlarged Filtrations – III

From the definition of G, we can write

∀gt ∈ Gt ∃ft ∈ Ft : gt ∩ {τC > t} ∩ {τI > t} = ft ∩ {τC > t} ∩ {τI > t}

or simply

∀gt ∈ Gt ∃ft ∈ Ft : gt ∩ {τ > t} = ft ∩ {τ > t}

Thus, for any G-adapted process xt we can introduce the pre-default
F-adapted process x̃t such that

1{τ>t}xt = 1{τ>t}x̃t

We use this property for numerical implementations to express
expectations under the enlarged G filtration as expectations under the
market F filtration.
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Arbitrage-Free Pricing Counterparty Credit Risk

Trading Strategies with Defaultable Counterparties – I

The counterparty credit risk is defined as the risk that the
counterparty to a transaction could default before the final settlement
of the transaction cash flows.
−→ When one of the counterparty defaults the trade is terminated.
−→ An economic loss would occur if the transaction with the counterparty

has a positive economic value at the time of default.
We can accommodate counterparty risk by terminating the dividend
process at the first default event, and setting the terminal condition
for the security price accordingly.

ST∧τ := 1{τ≤T}θτ , Dt := D0 +
∫ t

0
1{τ>u}dπu

where θτ is the cash flow paid if the default occurs, and without loss
of generality we set 1{τ>T}ST

.= 0.
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Arbitrage-Free Pricing Counterparty Credit Risk

Trading Strategies with Defaultable Counterparties – II

To avoid arbitrages we require that the deflated gain processes are
martingale under the G filtration.
The pricing equation becomes

St = Bt E

[
1{τ≤T}

θτ
Bτ

+
∫ T

t
1{τ>u}

dDu
Bu
| Gt

]

A similar expression holds for generic deflators Yt .
Since credit default risk introduces an element of non-predictability,
we cannot implement a replication strategy to price derivative
securities, but in simple cases.
−→ However, we can price them as any other market security.
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Arbitrage-Free Pricing Counterparty Credit Risk

Close-Out Netting Rules – I

In case of default of one party, the surviving party should evaluate the
transactions just terminated, due to the default event occurrence, to
claim for a reimbursement after the application of netting rules to
consolidate the transactions.
−→ The amount of the cash flow θτ results from such analysis.
The cash flow θτ is described by the ISDA documentation as given by

θτ := 1{τC<τI}
(
RCε

+
τ + ε−τ

)
+ 1{τI<τC}

(
ε+
τ + RIε

−
τ

)
= ετ − 1{τC<τI}(1− RC )ε+

τ + 1{τI<τC}(1− RI)ε−τ

where RC and RI are the recovery rates, and ετ is the close-out
amount representing the exposure measured by the surviving party on
the default event.
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Arbitrage-Free Pricing Counterparty Credit Risk

Close-Out Netting Rules – II

It is difficult to define the close-out amount, and also ISDA is not
very assertive on the topic.
−→ See Brigo, Morini and Pallavicini (2013) for a review.
You may have a risk free close-out, where the residual deal is priced
at mid market without any residual counterparty risk.

ετ
.= Bτ

∫ T

τ∧T
E
[

dπu
Bu
| Gτ

]
You may have a replacement close-out, where the remaining deal is
priced by taking into account the credit quality of the surviving party
and of the party that replaces the defaulted one.
A possible guess for the pre-default close-out is given by

ετ
.= S̃τ−
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Arbitrage-Free Pricing Counterparty Credit Risk

Close-Out Netting Rules – III

The replacing pre-default close-out is the first example of
non-linearities in the pricing equation.
Indeed, if we write the pre-default price we get

1{τ>t}S̃t = 1{τ>t}Bt E

[
1{τ≤T}

θτ (S̃τ )
Bτ

+
∫ T

t
1{τ>u}

dDu
Bu
| Gt

]

The above expression is an implicit equation for the the pre-default
price of the security, which could be without solutions.
In the following, when we introduce collateralization and funding
costs, we discuss again such problem.
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Arbitrage-Free Pricing Margining Procedures

Collateralization and Counterparty Credit Risk

The growing attention on counterparty credit risk is transforming
OTC derivatives money markets:
−→ an increasing number of derivative contracts is cleared by CCPs, while
−→ most of the remaining contracts are traded under collateralization.
Both cleared and bilateral deals require collateral posting, along with
its remuneration.
Collateralized bilateral trades are regulated by ISDA documentation,
known as Credit Support Annex (CSA).
Centralized clearing is regulated by the contractual rules described by
each CCP documentation.
See Brigo et al. (2012) and Brigo and Pallavicini (2014) for a
description of bilateral-traded and centrally-cleared contracts.

A. Pallavicini Funding Costs 29 May 2015 41 / 86



Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – I

We can include the margining procedure within arbitrage-free pricing
by extending the definition of the gain and the cumulative dividend
process.
In general, a margining practice consists in a pre-fixed set of dates
during the life of a deal when both parties post or withdraw
collaterals, according to their current exposure, to or from an account
held by the Collateral Taker.
We consider that a positive collateral account Ct is held by the
investor, otherwise by the counterparty. Moreover, as we set a null
terminal condition for the security price, we set CT

.= 0.
The Collateral Taker remunerates the account at rate ct fixed by the
collateralization agreement.
−→ The collateral rate may depend on the sign of the collateral account.
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – II

Thus, the cumulative dividend process can be extended in the
following way

Dt := D0 +
∫ t

0
1{τ>u} (dπu + dCu − cuCu du)

Notice that including the collateral account in the cumulative
dividend process means that we can re-hypothecate its content.
Moreover, at trade termination we have to withdraw collateral assets
kept in our accounts, so that the gain process can be re-defined as

Gt := St + Dt − Ct
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – III

To avoid arbitrages we require that the deflated gain processes are
martingale under the G filtration.
Thus, we get

Ḡt = E
[

ḠT∧τ | Gt
]

=⇒ S̄t = C̄t + E

[
S̄T∧τ − C̄T∧τ +

∫ T

t
1{τ>u}dD̄u | Gt

]

The integral over deflated dividends can be written as∫ T

t
1{τ>u}dD̄u =

∫ T

t
1{τ>u}

(
dπu
Bu

+ dCu
Bu
− cuCu du

Bu

)
= CT∧τ

BT∧τ
− Ct∧τ

Bt∧τ
+
∫ T

t
1{τ>u}

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – IV

If we substitute the expression for the dividend integral, we get the
pricing equation

1{τ>t}S̃t = 1{τ>t}Bt E

[
1{τ≤T}

θτ
Bτ

+
∫ T

t
1{τ>u}

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
| Gt

]

According to ISDA the definition of the on-default cash flow in
presence of collateralization and re-hypothecation is given by

θτ := ετ − 1{τC<τI}(1− RC )(ετ − Cτ− )+ − 1{τI<τC}(1− RI)(ετ − Cτ− )−

Another source of non-linearities occurs if the collateral account is
proportional to the pre-default price of the derivative.

Ct
.= αt S̃t

where αt is a F-adapted process.
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Funding Costs Defaultable Bank Accounts

How to Construct a Bank Account

When we derive the pricing equations, we assume the availability of a
treasury bank account.
Now, we analyse how it is implemented by the treasury, and if
counterparty risk may change this construction.
Bank accounts are used by traders both for cash lending and
borrowing.
−→ Trading strategies to borrow and to lend cash are differently

implemented, leading to different bank accounts.
−→ See Bergman (1995), Crépey (2011), Pallavicini, Perini and Brigo

(2011).
We consider the following stylized procedure up to time t.
−→ Lending: a trading desk has a surplus of cash to be invested at time 0,

at time t the desk gets the cash back with a premium.
−→ Borrowing: a trading desk needs cash at time 0, at time t the desk

gives the cash back with a fee.
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Funding Costs Defaultable Bank Accounts

Lending Bank Account – I

We start by discussing the lending case.
In particular, we assume that a bank “I” invests cash in zero-coupon
bonds of a counterparty “C”.
Along with the position in bonds the bank shall buy protection for
losses due to the default of the counterparty.
−→ The bank can buy a Credit Default Swap (CDS) for each bond in the

strategy.
−→ A CDS contract protects the bond owner from losses occurring on

default time by paying a fee s l
t .

If the counterparty defaults the CDS covers all losses, and the bank
may open a new position with another counterparty.
The strategy can be implemented up to time t or up to the default of
the bank. In particular, we assume to roll the positions on a time grid

{t0 = 0, t1, . . . , tm = t}
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Funding Costs Defaultable Bank Accounts

Lending Bank Account – II

At time t0 the bank buys a zero-coupon bond of the counterparty
with maturity t1 and notional

ql
t0 := 1

P l
t0(t1)

where P l
t0(t1) is the bond market price, so that we have a cash flow of

1{τ>t0}γ
buy
t0 := −1{τ>t0}ql

t0P
l
t0(t1)

At the same time the bank enters at par into a CDS contract with
maturity t1 on the same bond.
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Funding Costs Defaultable Bank Accounts

Lending Bank Account – III
At time t1 the notional of the bond is returned to the bank and the
CDS fee is paid, if neither the bank nor the counterparty has
defaulted between t0 and t1.

1{τ>t1}γ
receive
t1 := 1{τ>t1}ql

t0 , 1{τ>t1}γ
fee
t1 := −1{τ>t1}ql

t0s
l
t(t1 − t0)

If a default happens, and the defaulting party is the counterparty, the
CDS covers all losses, and on the next time-step the position is
opened with another counterparty.
If the bank survives, all contracts are opened again with notional

ql
t1 :=

ql
t0(1− s l

t(t1 − t0))
P l

t1(t2)

so to build a self-financing strategy, namely

γreceive
t1 + γfee

t1 + γbuy
t1 = 0
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Funding Costs Defaultable Bank Accounts

Lending Bank Account – IV

Thus, we can sum all the contributions up to time t, or up to the
default of the bank, to define the wealth generated by the investing
strategy.

W l
t∧τI

:= 1 +
m−1∑
k=0

1{τI>tk}γ
buy
tk +

m∑
k=1

1{τI>tk}
(
γreceive

tk
+ γfee

tk

)
=

m∏
k=1

1{τI>tk}
1− s l

tk
(tk − tk−1)

P l
tk−1(tk)

We can write the wealth of the strategy in continuous time as

W l
t∧τI

= exp
{∫ t∧τI

0
du
(
y l

u − s l
u
)}

, y l
t := −∂T logP l

t(T )|T=t

where y l
t is the market yield of the bond issued by the counterparty.
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Funding Costs Defaultable Bank Accounts

Lending Bank Account – V

Up to the default of the bank (included) the wealth process is a
locally risk-free bank account, independently of the counterparty
issuing the bonds.
All these accounts are derived securities, so that, to avoid arbitrages,
all the bond/CDS bases must be equal to the same rate rt .

rt := y l
t − s l

t

In the practice many factors, like bond and CDS market liquidity,
CDS collateralization and gap risk, default event specification, etc. . . ,
prevent to extract rt from bond and CDS quotes.
For later convenience, we cast the bond/CDS basis as a spread `lt
over the overnight rate et , and we write

`l
t := y l

t − s l
t − et
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Funding Costs Defaultable Bank Accounts

Borrowing Bank Account – I

We continue the discussion with the borrowing case.
In particular, we assume that a bank “I” obtains cash by issuing
zero-coupon bonds.
Notice that the bank cannot buy protection on herself to hedge its
own default event.
At time t0 the bank issues a zero-coupon bond with maturity t1 and
notional

qb
t0 := 1

Pb
t0(t1)

where Pb
t0(t1) is the bond market price, so that we have a cash flow of

1{τI>t0}γ
issue
t0 := 1{τI>t0}qb

t0P
b
t0(t1)
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Funding Costs Defaultable Bank Accounts

Borrowing Bank Account – II

If the bank defaults, the strategy is terminated and the bond owner
recovers only a fraction RI of the notional.

1{t0<τI≤t1}γ
recovery
τI

:= −1{t0<τI≤t1}RIqb
t0

If the bank survives, at time t1 the notional of the bond is returned to
the counterparty.

1{τI>t1}γ
pay
t1 := −1{τI>t1}qb

t0

and all contracts are opened again with notional

qb
t1 :=

qb
t0

Pb
t1(t2)

so to build a self-financing strategy (but on bank default event),
namely

γpay
t1 + γissue

t1 = 0

A. Pallavicini Funding Costs 29 May 2015 54 / 86



Funding Costs Defaultable Bank Accounts

Borrowing Bank Account – III

Thus, we can sum all the contributions up to time t, or up to the
default of the bank, to define the wealth generated by the funding
strategy.

W b
t∧τI

:= −1 +
m−1∑
k=0

1{τI>tk}
(
γissue

tk
+ 1{τI≤tk+1}γ

recovery
τI

)
+

m∑
k=1

1{τI>tk}γ
pay
tk

= −
m∏

k=1
1{τI>tk}

1
Pb

tk−1(tk)
− RI

m−1∑
k=0

1{tk<τI≤tk+1}

k∏
j=1

1
Pb

tj−1(tj)

We can write the wealth of the strategy in continuous time as

W b
t∧τI

= W̃ b
t∧τI
− 1{t=τI}(1− RI)W̃ b

τI
, W̃ b

t := − exp
{∫ t

0
du yb

u

}
where yb

t is the market yield of the bond issued by the bank.
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Funding Costs Defaultable Bank Accounts

Borrowing Bank Account – IV

Only up to the default of the bank (excluded) the wealth process is a
locally risk-free bank account.
On bank default the position is terminated with an additional cash
flow, given by

(1− RI) exp
{∫ τI

0
du yb

u

}
We notice that, in case of default of the bank, we have a funding
benefit since only a part of the reimbursement will be fulfilled.
−→ See Crépey (2011) and Pallavicini, Perini and Brigo (2011).
For later convenience, we express the yield of bank bonds as a spread
`bt over the overnight rate et , and we write

`b
t := yb

t − sb
t − et

where sb
t is the CDS spread of the bank.
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Funding Costs Defaultable Bank Accounts

Trading Strategies with Funding Costs – I

Lending and borrowing strategies are used by the treasury to assist
trading activities.
We can focus on a particular trading strategy in market or derived
securities which is funded by the treasury on a netting base (funding
netting set).
The assignment of a security to a particular netting set is decided by
the treasury.
−→ A possible choice is a netting set including all the trades of the bank.
−→ We assume that contracts of the same counterparty are not split

among different netting sets.
−→ See Pallavicini, Perini and Brigo (2011), Albanese and Andersen

(2015).
Now, we try to establish a pricing formula for the whole netting set.
This exercise requires to re-define the TBA to take into account the
possibility of default of the bank.
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Funding Costs Defaultable Bank Accounts

Trading Strategies with Funding Costs – II
We can accommodate the funding benefit by setting the terminal
condition on bank default as given by

ST∧τ := 1{τ≤T}θτ + 1{τ=τI<T}(qf
τI

)+(1− RI)Bf
τI

where qf
t is the quantity of cash allocated by the treasury to fund the

security St within the netting set, and the TBA is defined as

Bf
t := 1{qf

t>0}Bb
t + 1{qf

t≤0}B
l
t

where the lending and borrowing bank accounts are defined as

Bl
t := W l

t = exp
{∫ t

0
du
(
y l

u − s l
u
)}

, Bb
t := −W̃ b

t = exp
{∫ t

0
du yb

u

}
We define also a TBA rate as given by

ft := 1{qf
t>0}yb

u + 1{qf
t≤0}

(
y l

u − s l
u
)
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Funding Costs Defaultable Bank Accounts

Trading Strategies with Funding Costs – III

To avoid arbitrages we require that the gain processes, deflated by the
TBA, are martingales under the G filtration.
−→ The equivalent martingale measure depends on the netting set, so that

we are removing only the arbitrages within the netting set.
−→ See Bielecki and Rutkowski (2014) for a discussion of arbitrages in

non-linear pricing.
The pricing equation becomes

1{τ>t}S̃t = Bf
t Ef

[
1{t<τ≤T}

θτ
Bf
τ

+ 1{t<τ=τI≤T}(qf
τI

)+(1− RI) | Gt

]
+ Bf

t Ef

[∫ T

t
1{τ>u}

(
dπu
Bf

u
+ (fu − cu)Cu du

Bf
u

)
| Gt

]

where thw f over the expectation symbols is reminder of the
dependency of the measure on the funding strategy.
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Funding Costs Funding Policies and Netting Sets

Funding Policies – I

A first possibility to fix the unknown value of (qf
τI

)+ is pricing the
whole netting set by replicating it with the contained securities.
This price-and-hedge problem requires to simultaneously solve three
equations: the definition of the netting set, the self-financing
condition, and the terminal condition inclusive of the funding benefit.
The solution consists both in the value of the netting set and in the
strategy in cash and securities used to hedge it.
−→ See Crépey (2011), Bielecki and Rutkowski (2014).
The existence of a solution in a general setting is difficult to prove,
since the terminal condition is not predictable (gap risk).
−→ Contagion effects, or a delay in the default procedure, cannot be

hedged in the practice.
−→ The market securities may jump if sensitive to credit risk.
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Funding Costs Funding Policies and Netting Sets

Funding Policies – II
Alternatively, we could implement a partial hedging, and we could size
the cash amount by some optimal argument.
−→ See Crépey (2011), Burgard and Kjaer (2011).
Here, we assume a diffusive setting for underlying risk factors and
predictable terminal conditions for price processes.
−→ Under these assumptions, we know that, in case of a complete market,

the hedging strategy is given by delta hedging.
−→ See Crépey (2011), Pallavicini, Perini and Brigo (2011).
Thus, if we can consider a netting set formed by one derivative
security Vt along with its delta-hedging assets St , we get that the
quantity of cash needed to implement the hedging strategy is given by

Ft := Vt − CV
t − (St − Ct) · ∂SVt , qf

t
.= Ft + εt

Bf
t

where Ct and CV
t are the collateral accounts of market and derived

securities, and εt is the hedging error.
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Funding Costs Funding Policies and Netting Sets

Funding Policies – III

In the same way we can consider netting sets formed by many derived
securities. In this case, we can net all the funding requirements.

F i
t := V i

t − CV
t − (St − Ct) · ∂SV i

t , qf
t
.= 1

Bf
t

n∑
i=1

(F i
t + εit)

Notice that this choice effectively reduces funding requirements, since
we have ( n∑

i=1
(F i

t + εit)
)+

≤
n∑

i=1

(
F i

t + εit
)+

In the following we focus on the case of a single derived security. In
the last section we discuss again this problem.
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Funding Costs Funding Policies and Netting Sets

Pricing Formulae with Funding Costs – I

In the case of a netting set formed by a single derived security, and
under the assumption of a diffusive setting without gap risk, we can
write the price equation as given by

1{τ>t}Ṽt = Bf
t Ef

[
1{t<τ≤T}

θV
τ

Bf
τ

+
∫ T

t
1{τ>u}

dπV
u

Bf
u

+ (fu − cu)CV
u du

Bf
u

| Gt

]

+ Bf
t Ef

[
1{t<τ=τI≤T}(1− RI)

(FτI + ετI )+

Bf
τI

| Gt

]
It is useful to make explicit the dependency of the TBA process and
rate on the cash used to implement the hedging strategy.
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Funding Costs Funding Policies and Netting Sets

Pricing Formulae with Funding Costs – II

We can apply the Feynman-Kac theorem to write flows deflated w.r.t.
a bank account Be

t accruing at the overnight rate et .

1{τ>t}Ṽt = Be
t

∫ T

t
Ee
[
1{τ>u}

dπV
u + (eu − cu)CV

u du
Be

u
+ 1{τ∈du}

θV
u

Be
u
| Gt

]
− Be

t

∫ T

t
Ee
[
1{τ>u}(fu − eu) Fu

Be
u
| Gt

]
+ Be

t

∫ T

t
Ee
[
1{τ=τI∈du}(1− RI)

(Fu + εu)+

Be
u

| Gt

]
where the pricing measure is such that the market securities can be
priced as

1{τ>t}S̃t = Be
t

∫ T

t
Ee
[
1{τ>u}

dπu + (eu − cu)Cu du
Be

u
+ 1{τ∈du}

θu
Be

u
| Gt

]
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Funding Costs Funding Policies and Netting Sets

Does Funding Costs Exists ? – I

We can check that in a complete market funding costs does not exits.
−→ See Pallavicini, Perini and Brigo (2011), Burgard and Kjaer (2011),

Hull and White (2012), Albanese and Andersen (2015).
We switch to market filtration, remove collaterals, and we put εt

.= 0.

1{τ>t}Ṽt = 1{τ>t}

∫ T

t
Ee
[

Be+λ
t

Be+λ
u

(
dπV

u + θV
u λu du

)
| Ft

]
− 1{τ>t}

∫ T

t
du Ee

[
Be+λ

t

Be+λ
u

`l
u (Vu − Su · ∂SVu)− | Ft

]
− 1{τ>t}

∫ T

t
du Ee

[
Be+λ

t

Be+λ
u

(`b
u + sb

u − (1− RI)λI
u) (Vu − Su · ∂SVu)+ | Ft

]
where we have substituted the TBA rate in term of CDS spreads and
liquidity bases, while the default intensities are defined as

λt dt := E
[
1{τ∈t} | Gt

]
, λI

t dt := E
[
1{τI∈t} | Gt

]
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Funding Costs Funding Policies and Netting Sets

Does Funding Costs Exists ? – II
Then, we apply again the Feynman-Kac theorem to group all the
adjustments into an effective discount rate.

1{τ>t}Ṽt = 1{τ>t}

∫ T

t
Eζ
[

Bζ+λ
t

Bζ+λ
u

(
dπV

u + θV
u λu du

)
| Ft

]

where the effective rate ζt is given by

ζt := et + (`b
t + sb

t − (1− RI)λI
t)1{Vt>St ·∂S Vt} + `l

t1{Vt<St ·∂S Vt}

If the bank has the possibility to trade her own CDS, we have that

sb
t
.= (1− RI)λI

t

leading to

ζt = et + `b
t 1{Vt>St ·∂S Vt} + `l

t1{Vt<St ·∂S Vt}
.= rt

where the last step holds assuming no CDS/bond basis.
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Funding Costs Additive Price Adjustments

Fair Value Policies – I

Some cash flows in the pricing equation happen after the default of
the investor.
−→ These flows are terms in θV

t and the funding benefits.
The investor can ignore such flows while trading with other
counterparties, since they matter only when the default procedure is
in place after the investor default.
We can split accordingly the derivative price as

Vt := V 1
t + V 2

t

where V 1
t is the trading part and V 2

t the treasury part of the
derivative price.
Furthermore, we split the on-default cash flow to isolate the part
occurring on investor’s default.

θV
τ := 1{τC<τI}θ

V ,C
τC

+ 1{τI<τC}θ
V ,I
τI
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Funding Costs Additive Price Adjustments

Fair Value Policies – II

We start with an approximation. We consider the funding
adjustments only for contractual cash flows, and we discard the
hedging error, so that we get

Vt ≈
∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u

(
dπV

u + (eu − cu)CV
u du + 1{τ∈du}θ

V
u
)
| Gt

]
+

∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u

(
1{τI∈du}(1− RI)(F 0

u )+ − (f 0u − eu)F 0
u du

)
| Gt

]

F 0
t := V 0

t − CV
t − (St − Ct) · ∂SV 0

t , V 0
t :=

∫ T

t
Ee

t

[
Be

t
Be

u
dπu

]
f 0t := et + 1{F 0

t >0}
(
sb
t + `b

t
)

+ 1{F 0
t ≤0}`

l
t

Notice that if the market is complete this approximation is exact.
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Funding Costs Additive Price Adjustments

Fair Value Policies – III

MtM V 1
t := V 0

t

CVA −
∫ T

t
Ee
[
1{τ=τC∈du}

Be
t

Be
u

(V 0
u − θC

u ) | Gt

]
LVA −

∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u

(cu − eu)CV
u du | Gt

]
FCA −

∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u

(
sb
u + `b

u
)

(F 0
u )+ du | Gt

]
FBA +

∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u
`l

t(−F 0
u )+ du | Gt

]
DVA V 2

t :=
∫ T

t
Ee
[
1{τ=τI∈du}

Be
t

Be
u

(θI
u − V 0

u ) | Gt

]
FDA +

∫ T

t
Ee
[
1{τ=τI∈du}

Be
t

Be
u

(1− RI)(F 0
u )+ | Gt

]
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Funding Costs Additive Price Adjustments

Fair Value Policies on Netting Sets – I

If we look at the whole netting set, we can apply the previous
decomposition to each contract of the set, but with a cash amount

F 0
t :=

n∑
i=1

F 0,i
t :=

n∑
i=1

V 0,i
t − CV ,i

t − (St − Ct) · ∂SV 0,i
t

Since the adjustments are non-linear functions of the cash amount,
we need a recipe to decompose the adjustments.
We can define the cash amount to compute funding costs

F b,0,i
t := (

n∑
j=1

F 0,j
t )+ − (

n∑
j=1,j 6=i

F 0,j
t )+

and the cash amount to compute funding benefits

F l,0,i
t := (

n∑
j=1

F 0,j
t )− − (

n∑
j=1,j 6=i

F 0,j
t )−
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Funding Costs Additive Price Adjustments

Fair Value Policies on Netting Sets – II

Thanks to the definitions of the cash amounts to compute funding
costs and benefits, we can add a new contract into the netting set
without re-computing the funding adjustments of the other ones.

FCAi −
∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u

(
sb
u + `b

u
)

F b,0,i
u du | Gt

]
FBAi +

∫ T

t
Ee
[
1{τ>u}

Be
t

Be
u
`l

t(−F l,0,i
u ) du | Gt

]
FDAi +

∫ T

t
Ee
[
1{τ=τI∈du}

Be
t

Be
u

(1− RI)F l,0,i
u | Gt

]
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Appendix: Calculation Tools Feynman-KAc Theorem

Probabilistic Interpretation of Pricing Equations – I

The Feynman-Kac Theorem
Consider a vector of Markov risk factors St with infinitesimal generator

Lµt := (µtSt) · ∂S + 1
2Tr∂t〈S, S〉t∂2S

and assume that the derivative price Vt solves the PDE

(∂t + Lµt − νt) Vt + ∂tπt = 0 , VT = 0

Hence, the solution of the PDE is given by

Vt =
∫ T

t
Eµt
[

Bνt
Bνu

dπu

]
where under the pricing measure Qµ the risk factors grow at rate µt .
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Appendix: Calculation Tools Feynman-KAc Theorem

Probabilistic Interpretation of Pricing Equations – II

A useful application of the theorem is changing the discount factor by
adding a stream of coupons.

Vt =
∫ T

t
Eµt
[

Bνt
Bνu

dπu

]
=

∫ T

t
Eµt
[

Bρt
Bρu

dπu + (µu − ρu)Vu du
]

=
∫ T

t
Eρt
[

Bρt
Bρu

dπu + (µu − ρu)Vu du − (νu − ρu)Su · ∂SVu du
]

where under the pricing measure Qρ the risk factors grow at rate ρt .
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Appendix: Calculation Tools Filtration Switching Tools

Pricing Cash Flows Occurring before the Default Event – I

For any G-adapted process φt , we can consider the G-adapted process

xt
.= E
[
1{τ>T}φT | Gt

]
If we observe xt only before the default event, and we take the
expectations of both side under F filtration, we get

x̃t E
[
1{τ>t} | Ft

]
= E

[
1{τ>t}E

[
1{τ>T}φT | Gt

]
| Ft

]
= E

[
1{τ>T}φT | Ft

]
On the other hand, we have from the definition of pre-default process

1{τ>t}x̃t = 1{τ>t}E
[
1{τ>T}φT | Gt

]
leading to

1{τ>t}E
[
1{τ>T}φT | Gt

]
= 1{τ>t}

E
[
1{τ>T}φT | Ft

]
Q{ τ > t | Ft }
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Appendix: Calculation Tools Filtration Switching Tools

Pricing Cash Flows Occurring before the Default Event – II

First Filtration Switching Lemma
In a market with defaultable names, where τ is the first default event, we
can price cash flows occurring before the first default event by switching to
the market filtration F .

1{τ>t}E
[
1{τ>T}φT | Gt

]
= 1{τ>t}

E
[
Q{ τ > T | FT } φ̃T | Ft

]
Q{ τ > t | Ft }

where φt is a G-adapted process, and φx t is the corresponding pre-default
process. In particular, we have also

1{τ>t}Q{ τ > T | Gt } = 1{τ>t}
Q{ τ > T | Ft }
Q{ τ > t | Ft }
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Appendix: Calculation Tools Filtration Switching Tools

Pricing Cash Flows Occurring on the Default Event – I

A second useful lemma can be derived for cash flows paid only if a
default occurs.
For any G-adapted process φt we can proceed as before, but, now, we
consider the G-adapted process

xt
.= E
[
1{τ<T}φτ | Gt

]
leading to

1{τ>t}E
[
1{τ<T}φτ | Gt

]
= 1{τ>t}

E
[
1{t<τ<T}φτ | Ft

]
Q{ τ > t | Ft }

As before we wish to remove the explicit dependency on the default
event on the right-hand side.
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Appendix: Calculation Tools Filtration Switching Tools

Pricing Cash Flows Occurring on the Default Event – II

We go on by localizing the default event, and we get

1{τ>t}E
[
1{t<τ<T}φτ | Ft

]
= 1{τ>t}

∫ T

t
E
[
1{τ∈du}φu | Ft

]
To proceed further we require that φt is also predictable. We obtain

1{τ>t}E
[
1{t<τ<T}φτ | Ft

]
= 1{τ>t}

∫ T

t
du E

[
1{τ>u}λuφu | Ft

]
where we define the first-default intensity as the density of the
compensator of 1{τ<t}, namely

λt dt := E
[
1{τ∈dt} | Gt

]
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Appendix: Calculation Tools Filtration Switching Tools

Pricing Cash Flows Occurring on the Default Event – III

Second Filtration Switching Lemma
In a market with defaultable names, where τ is the first default event, we
can price cash flows occurring on the first default event by switching to
the market filtration F .

1{τ>t}E
[
1{τ<T}φT | Gt

]
= 1{τ>t}

∫ T

t
du

E
[
Q{ τ > u | Fu } λ̃uφ̃u | Ft

]
Q{ τ > t | Ft }

where λt is the first-default intensity and φt is a G-predictable process,
while λ̃t and φ̃t are the corresponding pre-default processes.
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