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From today Financial Times
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Cross-correlation between pairs of stock  
returns are well-known 

They may be quantified by the  

correlation coefficient ρij 

Ln
 P

(t)
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Overview


- Describe the structure of empirical correlation matrices; 

-  Validate the statistical robustness of the detected correlation matrices with  
  methods from Random Matrix Theory; 

-  Model hierarchies of a complex system in terms of hierarchical  
   trees and correlation based networks; 

- Validate the statistical robustness of correlation based networks with 
  bootstrap procedures; 

-  Provide a factor model which is able to describe a system with a  
   nested hierarchy; 

- Provide a quantitative tool to compare different filtering methods.   
Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa


How to quantify and model information  
present in a correlation matrix? 
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A first objective of principal component analysis is 

to determine the standardized linear combination of the

original variables which has maximal variance.  


Principal component analysis looks for a few linear

combinations which can be used to summarize data,

losing in the process as little information as possible. 


A basic approach:

Principal Component Analysis
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Given a set of points in Euclidean space, the first principal 
component corresponds to a line that passes through the 
multidimensional mean and minimizes the sum of squares of 
the distances of the points from the line.  

The second principal component corresponds to the same 
concept after all correlation with the first principal component 
has been subtracted out from the points.  

€ 

C = correlation  matrix
D = diagonal matrix of
       eigenvalues of C :
       diag λ1,λ2,...,λN[ ]
V = orthogonal matrix of
       eigenvectors of C
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Each eigenvalue of the correlation matrix is 
proportional to the portion of the "variance" (more 
correctly of the sum of the squared distances of the 
points from their multidimensional mean) that is 
correlated with each eigenvector. The sum of all the 
eigenvalues is equal to the sum of the squared 
distances of the points from their multidimensional 
mean. 
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AIG
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AIG
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SLB
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OXY


The eingevalue spectrum of this correlation matrix is


λ1
 λ2
 λ3
 λ4
 λ5
 λ6
 λ7
 λ8
 λ9
 λ10


4.72
 1.40
 0.96
 0.52
 0.48
 0.45
 0.42
 0.39
 0.35
 0.30
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λ1
 λ2
 λ3
 λ4
 λ5
 λ6
 λ7
 λ8
 λ9
 λ10


4.72
 1.40
 0.96
 0.52
 0.48
 0.45
 0.42
 0.39
 0.35
 0.30

47.2
 14.0
 9.6
 5.2
 4.8
 4.5
 4.2
 3.9
 3.5
 3.0

47.2
 61.2
 70.8
 76.0
 80.8
 85.3
 89.5
 93.4
 96.9
 99.9


Percent of variance


The most important principal components are


  

€ 

y1 = 0.31x1 + 0.34x2 + 0.33x3 + 0.35x4 + 0.38x5 + 0.32x6 + 0.27x7 + 0.27x8 + 0.31x9 + 0.26x10
y2 = 0.03x1 + 0.22x2 + 0.15x3 + 0.13x4 + 0.17x5 + 0.23x6 − 0.50x7 + 0.32x8 − 0.40x9 − 0.56x10
y3 = 0.50x1 − 0.12x2 + 0.33x3 + 0.30x4 + 0.12x5 − 0.43x6 − 0.18x7 − 0.54x8 − 0.03x9 − 0.12x10
y4 = 0.37x1 − 0.42x2 + 0.33x3 − 0.43x4 − 0.20x5 + 0.11x6 − 0.37x7 + 0.33x8 + 0.25x9 + 0.17x10
y5 =……

AIG
 IBM
 BAC
 AXP
 MER
 TXN
 SLB
 MOT
 RD
 OXY


Total variance explained
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Selection of the most relevant principal components:


(i)  variance threshold (ex: 90%);

(ii)  “scree graph” (percentage of variance explained by 

       each eigenvalue (due to Cattel,1966);

(iii) exclude those principal components whose eigenvalues

       are less than average, i.e. less than one if a correlation

       matrix is used (Kaiser).  
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Example: what is the empirical structure of 

the return correlation matrix of a large 

portfolio of stocks?


How can we estimate and filter the 

information present in a correlation matrix 

estimated from a finite number of records? 
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Cross Correlation


Pearson’s correlation coefficient: 

€ 

ri(t) ≡ lnPi(t) − lnPi(t − τ)

Correlation Matrix 

€ 

C = ρij( )

N data series of length T


€ 

ri(t j ),     j =1,...,T;   i =1,...,N

Example: 

Log-return of stock price


Other correlation estimators:


-Fourier estimator

-Maximum Likelihood

  correlation estimator

- Hayashi-Yoshida estimator

-  ......


Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa
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Grayscale representation of the return 

correlation matrix of a portfolio of stocks


n(n-1)/2  
distinct 
correlation  
coefficients 

300 stocks 
traded at the 
US equity  
markets in 
2001-2003  
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Inventory variation 
correlation matrix 

obtained by sorting 
the MMs in the rows 
and columns 
according to their 
correlation of 
inventory variation 
with price return


BBVA 2003 

R 

T 

U 

Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa
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Statistical reliability �
of cross correlation coefficients


N T data
 ~ N 2 correlation coefficients:


It is therefore important to device methods to


- Filter statistically reliable information;


-  Quantitatively assess the stability of the filtered 
information;


- Model the filtered information. 


Lecture 1 - 4 November 
2011


Scuola Normale Superiore - Pisa


Statistical uncertainty is unavoidably associated with the

estimation of the correlation coefficient obtained from a 

finite number of records. 
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How to analyze the complexity of a 
correlation matrix?


Random Matrix Theory


Clustering  e.g. Hierarchical Clustering


 
    
 
    Super Paramagnetic Clustering


 
    
 
    Maximum Likelihood Clustering


 
    
 
    Sorting Point Into Neighbors


Correlation Based e.g. Minimum Spanning Tree (MST)

Networks                       Planar Maximally Filtered Graph (PMFG)

 
 
 
 
 
          Average Linkage Minimum Spanning Tree


Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa


M. Tumminello, F. Lillo, R.N. Mantegna, Correlation, hierarchies, and networks in 

financial markets, Journal of Economic Behavior & Organization (2010).
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Random Matrix Theory


Random Matrix Theory allows to quantify

the degree of statistical uncertainty observed 

in the determination of a correlation coefficient

matrix done with a finite number of records 

(under some simplifying assumptions).


Madan Lal Mehta, Random matrix theory, Academic press 1990
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RMT for Gaussian variables


Suppose that N elements are described by N time 

series of length T. They are independent Gaussian random 

variables with zero mean and variance σ2.


The correlation matrix of this set of variables

in the limit T -> ∞ is the identity matrix, which

has associated a spectrum of eigenvalues which

is composed of N delta functions at λ=1
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The limits of validity


However, due to statistical uncertainty for finite values 

of T what it is really observed for the eigenvalue 

spectrum of the correlation coefficient matrix is a spectrum 

characterized by eigenvalues with values located 

between λmin and λmax


In the limit T, N -> ∞ with a fixed ratio Q=T/N ≥1 

random matrix theory provides the probability density 

of the eigenvalues.  
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PDF of eigenvalues


The probability density is


€ 

ρ λ( ) =
T

2πσ 2λ
λmax − λ( ) λ − λmin( )

where


€ 

λmin
max =σ 2 1+1/Q± 2 1/Q( )

with Q=T/N
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€ 

ρ λ( ) =
T

2π λσ 2 λmax − λ( ) λ − λmin( ),    where    λmin
max =σ 2 1+1/Q± 2 1/Q( ),    σ 2 =1− λ1

N
,   and  Q =

T
N

.

L. Laloux, P. Cizeau, J.-P. Bouchaud & M. Potters, Phys. Rev. Lett. 83, 1468 (1999). 
V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley, Phys. Rev. Lett. 83, 
1471 (1999). 
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Characteristics of the eigenvalue spectrum


The spectrum of a typical portfolio can be divided

in three classes of eigenvalues:


1) The largest eigenvalue describes the common 

behavior of stocks (what is called “the market”).

It is incompatible with the random matrix theory of 

random variables.


2) A fraction of 5% of the eigenvalues is also 

incompatible with the random matrix theory because 

eigenvalues fall outside ] λmin, λmax[
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The low part of the spectrum


3) The remaining  

eigenvalues assume

values between λmin, λmax 

and therefore one 

cannot say whether the 

eigenspace, which is 

corresponding

to these eigenvalues, 

contains information or not.
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Which is the meaning of largest eigenvalues?


Stanley and collaborators relate some of 

them to some economic sectors

V- Plerou et al, Phys. Rev. E65, 066126 (2002)

P. Gopikrishnan et al, Phys. Rev. E64, 035106 (2001)


€ 

XS
k = PSi

i=1

n

∑ ui
k[ ]
2

€ 

PSi =
1
nSi
0

 
 
 

  
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In a different market we¶ were not able to reach the

same conclusion. Only in a few cases components

detected with PCA had a direct interpretation in terms 

of clear economic sectors.


¶C. Coronnello et al, Acta Phys. Pol. B36, 2653 (2005)


f. Healthcare


Linear combination


d. Capital goods

e. Technology
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Filtered correlation matrix with RMT (1)


€ 

Select λmax;

D∗ = diag
λi if λi >  λmax

λ0    otherwise
 
 
 

 

 
 

 

 
 

where λ0 is the average of 
eigenvalues smaller than λmax

€ 

C = correlation  matrix
D = diagonal matrix of
       eigenvalues of C :
       diag λ1,λ2,...,λN[ ]
V = orthogonal matrix of
       eigenvectors of C

€ 

CB
t = (ci j

B ) = VTD*V

€ 

CB =
ci j
B

ci i
B c j j

B

 

 
 
 

 

 
 
 

M. Potters, J.-P. Bouchaud & L. Laloux, Acta Phys. Pol. B  36 (9), pp. 2767-2784 (2005). 

Random matrix theory as a filtering procedure 
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€ 

Select λmax;

D∗ = diag
λi if λi >  λmax

0    otherwise
 
 
 

 

 
 

 

 
 

€ 

C = correlation  matrix
D = diagonal matrix of
       eigenvalues of C :
       diag λ1,λ2,...,λN[ ]
V = orthogonal matrix of
       eigenvectors of C

€ 

CS
t = (ci j

S ) = VTD*V

€ 

CS = δi j + ci j
S 1−δi j[ ]( )

B. Rosenow, V. Plerou, P. Gopikrishnan & H.E. Stanley, Europhys. Lett.  59 (4), pp. 500-506 (2002) 

Filtered correlation matrix with RMT (2)
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Optimal portfolios with RMT 

B. Rosenow et al, Europhys. Lett. 59, 500 (2002) 
have shown that the distance between the optimal 
predicted return-risk profile and the realized one 
is (often) larger in the Markowitz case than in a  
case when the correlation coefficient matrix is 
filtered by using the results of the RMT. 
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A (good) result

 ○ Markowitz 

□ RMT 

150 most 
capitalized  
stocks 
T=500 

1989-1992 

to=Jan 1990 

expected

(to-500,to)


realized

(to,to+500)
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Another filtering procedure: 
Hierarchical clustering


Lecture 1 - 4 November 2011
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1


By starting from a correlation matrix 

(which is a similarity measure)


AIG
 IBM
 BAC
 AXP
 MER
 TXN
 SLB
 MOT
 RD
 OXY


AIG


IBM


BAC


AXP


MER


TXN


SLB


MOT


RD


OXY


AXP
 MER
 0.664

IBM
 MER
 0.617

SLB
 OXY
 0.592

BAC
 MER
 0.591

RD
 
 OXY
 0.590

TXN
 MOT
 0.582

IBM
 TXN
 0.552

AXP 
 BAC
 0.547

AIG

 AXP
 0.543

AXP
 IBM
 0.537

SLB
 RD
 
 0.533

MER
 TXN
 0.533

AIG

 MER
 0.529

AIG

 BAC
 0.518

IBM
 MOT
 0.475

MOT
 MER
 0.462

MER
 RD
 
 0.440

AXP
 TXN
 0.422

.......
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Single linkage
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1
 0.543
 0.543
 0.543
 0.543
 0.543
 0.440
 0.543
 0.440
 0.440


1
 0.591
 0.617
 0.617
 0.552
 0.440
 0.552
 0.440
 0.440


1
 0.591
 0.591
 0.552
 0.440
 0.552
 0.440
 0.440


1
 0.664
 0.552
 0.440
 0.552
 0.440
 0.440


1
 0.552
 0.440
 0.552
 0.440
 0.440


1
 0.440
 0.582
 0.440
 0.440


1
 0.440
 0.590
 0.592


1
 0.440
 0.440


1
 0.590


1


One may obtain a simplified matrix by using classical 

clustering methods such us the single linkage clustering


AIG
 IBM
 BAC
 AXP
 MER
 TXN
 SLB
 MOT
 RD
 OXY


AIG


IBM


BAC


AXP


MER


TXN


SLB


MOT


RD


OXY


C<
SL
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Average linkage
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1
 0.501
 0.501
 0.501
 0.501
 0.412
 0.308
 0.412
 0.308
 0.308


1
 0.536
 0.577
 0.577
 0.412
 0.308
 0.412
 0.308
 0.308


1
 0.536
 0.536
 0.412
 0.308
 0.412
 0.308
 0.308


1
 0.664
 0.412
 0.308
 0.412
 0.308
 0.308


1
 0.412
 0.308
 0.412
 0.308
 0.308


1
 0.308
 0.582
 0.308
 0.308


1
 0.308
 0.562
 0.591


1
 0.308
 0.308


1
 0.562


1


Or, for example, the average linkage clustering


AIG
 IBM
 BAC
 AXP
 MER
 TXN
 SLB
 MOT
 RD
 OXY


AIG


IBM


BAC


AXP


MER


TXN


SLB


MOT


RD


OXY


C<
AL
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Hierarchical clustering output in a typical case


€ 

N =100 (NYSE) daily returns 1995 -1998

€ 

C< = (ρij
< )

ρij
< = ραk

where


€ 

αk
is the first


node where

elements 


i and j merge

together


Average Linkage Cluster Analysis 

Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa
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Filtered matrix


€ 

C<  from ALCA

€ 

C

€ 

N = 300 (NYSE); daily returns 2001- 2003

€ 

Cht ordered
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When one uses  
the stock order  
of the hierarchical  
tree the  
correlation matrix  
assumes a better  
readability  

technology 

oil 

financial 

utilities 

basic 
materials 

The complete matrix is richer of information
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Filtering by cluster analysis: Portfolio optimization �

average linkage 

150 most capitalized stocks T=500 1989-1992 

V. Tola, F. Lillo, M. Gallegati, R.N.M., Cluster analysis for portfolio optimization, 

Journal of Economic Dynamics & Control, 32, 235-258 (2008)


single linkage 
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€ 

C(α) =αT+ (1−α)S

€ 

S =  sample correlation matrix
T =  target matrix 
       (typically very stable to statistical fluctuations)

€ 

T could be the identity matrix, the constant correlation matrix, etc.
α is determined by expectation/optimization procedures

O. Ledoit, M. Wolf, J. Mult. Analysis 88, 365 (2004). 

The shrinkage procedure 
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Some values of α optimal


J. Schäfer, K. Strimmer,  
Stat. Appl. Gen. Mol.  
Biol. 4, 32 (2005).). 
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N=90 Stocks    (US equity markets, blue chips)


Comparison of several methods (realized risk)


Markowitz
 Single Index
 RMT-0
 RMT-M
 UPGMA
 WPGMA


Hausdorff
 Shr. Sin. Ind.
 Shr. Comm. Corr.


E. Pantaleo, M. Tumminello, F. Lillo, RNM, When do improved covariance matrix estimators enhance portfolio 

optimization? An empirical comparative study of nine estimators, Quantitative Finance 11,  1067-1080 (2011)
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Correlation based networks


€ 

C =

1 0.13 0.90 0.81
0.13 1 0.57 0.34
0.90 0.57 1 0.71
0.81 0.34 0.71 1

 

 

 
 
 
 

 

 

 
 
 
 

→ S =

1 3 0.90
1 4 081
3 4 0.71
2 3 0.57
2 4 0.34
1 2 0.13

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

Correlation Matrix (C)

Sorted List of Links (S)


( i, j, ρij ) 

i


j


wij=ρij


Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa
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Minimum Spanning Tree 

Define a similarity measure between the elements of the system 

Construct the list  S by ordering similarities in decreasing order  

Starting from the first 
 element of  S, 

add the corresponding link 
if and only if 

the graph is still a Forest or a Tree 

Minimum Spannig Tree  
MST 

Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa
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Correlation based tree(s)
 For the single 

linkage clustering 

procedure the 

correlation based 

tree is the minimum 

spanning tree


Correlation based trees and hierarchical trees do 

NOT carry the same amount of information.
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Minimum Spanning Tree (MST)


R. N. Mantegna,  EPJ B 11, 193 (1999) G. Bonanno, F. Lillo and R.N.M., Quant. Fin. 1, 96 (2001)

Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa


N=100 (NYSE)

daily returns

1995-1998

T=1011
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MST and Planar Maximally Filtered Graph 
(PMFG)


Define a similarity measure between the elements of the system 

Construct the list  S by ordering similarities in decreasing order  

Starting from the first 
 element of  S, 

add the corresponding link 
if and only if 

the graph is still a Forest or a Tree 

Starting from the first  
element of  S, 

add the corresponding link 
if and only if 

the graph is still Planar (g=0) 

Minimum Spannig Tree  
MST 

Planar Maximally 
Filtered Graph  

PMFG 

M. Tumminello, T. Di Matteo, T. Aste and R.N.M., PNAS USA 102, 10421 (2005)
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Planar Maximally Filtered Graph 
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N=100 (NYSE)

daily returns

1995-1998

T=1011


M. Tumminello, T. Di Matteo, T. Aste and R.N.M., PNAS USA 102, 10421 (2005)
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Cliques in the PMFG


When g=0, topological constraints allow the observation of 
cliques of 3 and 4 vertices only. 

BAC 

JPM MER 

MOB 

XON 

CHV ARC 

Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa
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Other correlation based networks have been obtained by selecting 
a thresholds on the similarity measure.  

J.-P. Onnela, K. Kaski, and J. Kertész, Eur. Phys. J. B 38, 353–362 (2004) 
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Topology† of MSTs in  

• empirical data;  
• in a one-factor model 

†Bonanno, Caldarelli, Lillo and Mantegna, PRE 68, 046130 (2003). 

Network analysis of a single index model:

Topology of MSTs
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Empirical data


The color code refers to  
the SIC index: 
• finance • manufacturing  
• construction • utilities  
• wholesale trade • mining  
• retail trade • services  
• public administration 

1071 stocks continuously 
traded at the NYSE  
during the period  
1987-1998 (3030 trading 
days) 
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Empirical data: degree distribution
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Comparison with the one-factor model


  

 We compare our empirical results with numerical simulations  
based on the one-factor model 

where αi and βiM are two real parameters, εi is a zero-mean noise  
term characterized by a variance equal to σi

2
 

RM(t) is the market factor. We choose it as the SP 500 index. 

In our investigation, we estimate the model parameters  
and generate an artificial market. 

€ 

Ri t( ) =α i + β iM RM t( ) + εi t( )
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Correlation in the one-factor model


The one-factor  
model explains  
more than  
85% of the  
elements of  
correlation  
matrix 
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MST of a one-factor model


One-factor model 
 Real data 
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Topological properties of the one-factor model


Degree  
distribution 
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How to assess the stability of the information 

filtered out by the hierarchical network


and correlation based network?
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A validation based on bootstrap


1.567
 0.789
 0.842
 … -0.234


0.113
 1.123
 -0.002
 … 0.198


1.065
 -1.962
 0.567
 … 1.785


0.113
 1.123
 -0.002
 … 0.198


0.479
 -1.828
 -2.041
 … -0.193


…
 …
 …
 … …


0.479
 -1.828
 -2.041
 … -0.193


0.113
 1.123
 -0.002
 … 0.198


1.567
 0.789
 0.842
 … -0.234


1.065
 -1.962
 0.567
 … 1.785


1.112
 0.998
 -0.424
 … 2.735


-0.211
 0.312
 -0217
 … 0.587


…
 …
 …
 … …


0.479
 -1.828
 -2.041
 … -0.193


Data Set Pseudo-replicate Data Set 

t1


t2


t3


t4


t5


…


T


e1
 e2
 e3
 … en
 e1
 e2
 e3
 … en


M surrogated data matrices are constructed, e.g. M=1000. 

Lecture 1 - 4 November 2011
 Scuola Normale Superiore - Pisa




OCS


Lecture 1 - 4 November 
2011


Scuola Normale Superiore - Pisa
 58


Bootstrap value of nodes of hierarchical trees


ALCA
 Bootstrap value density 


M. Tumminello, C. Coronnello, S. Miccichè, F. Lillo and R.N.M., Int. J. Bifurcation Chaos 
17, 2319-2329 (2007).  
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Statistical reliability of the minimum 
spanning tree


€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

M. Tumminello, C. Coronnello, S. Miccichè, F. Lillo and R.N.M., Int. J. Bifurcation Chaos 
17, 2319-2329 (2007).  
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Statistical reliability of the planar 
maximally filtered graph
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-  The value of the correlation between the 

   two elements;


-  The topology of the correlation based network. 


Which are the determinants of the bootstrap 

value of a link?
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Bootstrap vs correlation


€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

For Gaussian series: 

€ 

σρ =
1− ρ2

T − 3
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Information and stability of a filtering procedure.

How to quantify it? 


The Kullback-Leibler divergence
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Kullback-Leibler distance


For multivariate normally distributed random variables we obtain: 

,       where p and q are pdf’s. 

Minimizing the Kullback-Leibler distance is equivalent to 
maximizing the likelihood in the maximum likelihood factor analysis. 

We propose to use the Kullback-Leibler divergence to quantify the 
performance of different filtering procedures of the correlation matrix 

M. Tumminello, F. Lillo and R.N.M., Phys. Rev. E 76, 031123 (2007) 
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where Σ is the model correlation matrix of the system while S1 and S2 
are two sample correlation matrices obtained from two independent 
realizations each of length T . 

The three expectation values are independent from Σ, 
i.e they do not depend from the underlying model ! 

Expectation values
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Kullback vs Frobenius


• The expectation values of Frobenius distance are model 

  dependent, e.g. for a system of n=2 Gaussian random 

variables with correlation coefficient ρ it is


€ 

E F Σ,S( )[ ] = E tr Σ−S( ) Σ−S( )T[ ] 
  

 
  

=
2
π T

1− ρ2( )

   where Σ is the model correlation matrix of the system while  
   S is a sample correlation matrix obtained from a realization  
   of length T.  
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Kullback-Leibler divergence for 
non Gaussian random variables


The Kullback-Leibler divergence can also be analytically calculated 
random variables following a multivariate Student’s t-distribution:


€ 

If  µ
n

<<1 then :

G. Biroli, J.-P. Bouchaud, M. Potters, Acta Phys. Pol. B 38, 4009 (2007)
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Gaussian vs Student’s t-distribution
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€ 

KG Σ1,Σ2( ) =
1
2
log

Σ2
Σ1

 

 
 

 

 
 + tr Σ2

−1Σ1( ) − n
 

 
 
 

 

 
 
 

€ 

KS Σ1,Σ2( ) =
1
2
log

Σ2
Σ1

 

 
 

 

 
 + n log

tr Σ2
−1Σ1( )
n

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

€ 

If Σ1 ≅ Σ2 ⇒  KG Σ1,Σ2( ) ≅KS Σ1,Σ2( )
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The Kullback-Leibler divergence in the

analysis of models and empirical data
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Comparison of filtering procedures
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Σ


S1 

S2 
F1 F2 

T 

K
(Σ,S

1 )=f(n,T) 

K(S2, F2) 

K(S
1,  F

1 ) 

K(F1, F2) 

S1 and S2 are sample 
correlation matrices 
estimated from inde-

pendent realizations or 
bootstrap-replicas of 
the system. 


F1 and F2 are matrices 
filtered from S1 and S2

respectively.


Σ is the true 
correlation matrix of 
the system.
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Accuracy of filtering procedures (Models)
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M. Tumminello, F. Lillo and R.N.M., Phys. Rev. E 76, 031123 (2007) 
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Comparison of filtered correlation matrices


Block diagonal model 
with 12 factors. 

N=100,  
T=748. 

Gaussian random  
Variables. 
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Comparison of filtered correlation matrices


Block diagonal model 
with 12 factors. 

N=100,  
T=748. 

Gaussian random  
Variables. 
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Comparison of filtered correlation matrices�
(real data)


€ 

N =100 (NYSE)
daily returns 
2001- 2003
T = 748
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Comparison of filtered correlation matrices�
(real data, Student’s t assumption)


€ 

N =100 (NYSE)
daily returns 
2001- 2003
T = 748

M. Tumminello, F. Lillo, R.N. Mantegna, ACTA PHYSICA POLONICA B 38, 4079-4088 (2007)
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The Hierarchically Nested Factor Model


A factor is associated to each node 


€ 

xi(t) = γαh
f (αh )(t)

αh ∈G(i)
∑ + 1− γαh

2

αh ∈G( i)
∑ εi(t)

αh-th factor Idiosyncratic term 

€ 

γαh
= ραh

− ρg(αh )
; γα1 = ρα1

€ 

G(i) = Pedigree of element i,  
           e.g. G(9) = α1,α3,α9{ }
g(αh ) = Parent of node αh,  
             e.g. g(α7) =α2

  

€ 

xi ⋅ x j = γαh

2

αh ∈G( i)G( j )
∑ = ραk

= ρij
<

€ 

e.g. x1 ⋅ x4 = γα2

2 + γα1

2 = ρα2
− ρα1

+ ρα1
= ρα2

€ 

C< = (ρij
< )
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M. Tumminello, F. Lillo, R.N. Mantegna, Hierarchically nested factor model from multivariate data,  
EPL 78 (3), Art. No. 30006 (2007). 
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A simple hierarchically nested factor model


C = 

9 March 2010
 Scuola Normale Superiore - Pisa
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Spectral Analysis


2 large eigenvalues 

2 corresponding  
eigenvectors 

PCA is not able to reconstruct the true model 
and/or to give insights about its hierarchical features 

9 March 2010
 Scuola Normale Superiore - Pisa
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A problem of the hierarchical clustering method: by hierarchical 
clustering we always detects a n-1 factor hierarchically nested�
factor model�
A solution: Evaluation of node statistical uncertainty and node 
reduction


Hierarchical tree of the model 

3 nodes (factors) 

Hierarchical tree reconstruction 

99 nodes (factors) 

The hierarchically nested factor model allows to simulate the system. We use 

hierarchical clustering to investigate the simulations so that we can estimate 

the ability of hierarchical clustering to detect a hierarchically nested system. 


9 March 2010
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Self-consistent node-factor reduction


•   Select a bootstrap value threshold bt . 

•   For each node       : 


   If                       then  merge the  

   node       with his first ancestor  

    αq (in the path to the 

   root) such that                    . 

•   How to chose bt ? 
In a self-consistent way! 

€ 

b(αk ) < bt

€ 

b(αq ) ≥ bt

€ 

αk

€ 

αk

Hierarchically nested factor model  
correctly detects the model when  
bt>0.70 

9 March 2010
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Daily return of 100 stocks traded at NYSE in the time period

1/1995-12/1998 (T=1011)


23 nodes 

19 

9 

€ 

Sn =  sensitivity;    Sp =  specificity

Node reduction for an empirical system


9 March 2010
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€ 

Sn =
TP

TP + FN

€ 

Sp =
TN

TN + FP
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Interpretation of factors


Hierarchically nested factor model associated with the reduced 
dendrogram of 23 nodes. Here we made explicit the equations 
valid for stocks belonging to the Technology and Financial

sectors.


Technology Factor 

Financial Factor 

9 March 2010
 82
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Technology Factor 

Financial Factor 

Financial companies:

BAC, JPM, MER, AGC,

AOG, AXP, ONE, WFC,

USB
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-  Correlation based networks are informative about complex systems; 

-  Bootstrap can be used to statistically validate hierarchical trees 
  and correlation based networks; 

-  The stability and amount of information of a filtering procedure 
  of a correlation matrix can be quantified by using the  
  Kullback-Leibler distance. 
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Observatory of Complex Systems 

http://ocs.unipa.it 

2009 

2011 
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OCS website: http://ocs.unipa.it 
Lecture 1 - 4 November 2011
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"The only hero able to cut off Medusa's 

head is Perseus, who flies with winged 

sandals. ..... . To cut off Medusa's head 

without being turned to stone, Perseus 

supports himself on the very lightest of 

things, the winds and the clouds, and 

fixes his gaze upon what can be revealed 

only by indirect vision, an image caught 

in a mirror. I am immediately tempted to 

see this myth as an allegory on the poet's 

relationship to the world, a lesson in the 

method to follow when writing."


Italo Calvino, Six Memos for the Next 

MillenniumVintage Books, 

Random House, New York 1988


Head of Medusa (1598) 

Michelangelo Merisi  
da Caravaggio 

Uffizi gallery 


