Default and Credit Migration Risk in Trading Portfolios

Aldo Nassigh - UniCredit
Table of Contents

- Background
- Basel Committee requirements
- Overview of the model
- Conclusions
Background
Financial Industry – before Lehman

- **Growth of the corporate bonds and credit derivatives market**
 Starting from the late 90s, *corporate bonds’* market and the *credit derivatives’* market increased hugely
 In 2007 total notional amount on outstanding credit derivatives was **$35.1 trillion** with a gross market value of $948 billion (ISDA's Website)
 The total market value of outstanding corporate bonds (in the United States only) as of Q3 2008 was approximately **$6.1 trillion** (SIFMA, Federal Reserve System)

- **Squeeze of credit spreads (and their volatility)**
 After Fall 2001 (i.e. after the IT bubble and the twin towers) credit spreads underwent a long period of decrease, that lasted till Spring 2007

 Factors above boosted the ‘hunt for yield’:
 raising exposures by increasing notional and buying riskier names
Credit Spreads
Some data – before Lehman

Corporate bond spreads

Investment-grade corporate bond spreads

(a) Option-adjusted spreads.
Credit Trading

- Banks boosted the exposure to corporate bonds and credit derivatives in their trading book.

- Managing credit risk thanks to such financial products in trading books is the Credit Trading strategy.
 Trading portfolios are designed for speculative activity, with short holding period (days).

- In theory, the trading regime should minimize the risk, in accordance with the Constant Level of Risk assumption according to which, in case of deterioration of the creditworthiness of the obligor, exposures with high credit quality would have been replaced with the goal of moving the asset allocation back to the original risk profile.

- If perfect market liquidity and continuous Brownian motion for asset prices are granted, losses induced by the frequent rebalancing of the portfolio can indeed be neglected.
Background
Regulation – before Lehman

- **Regulatory Arbitrage**
 Banks were building large directional positions in the credit trading business, leveraging on the favourable regulatory treatment compared to the banking book

- **2004 - Credit Portfolio Models in the Basel II framework**
 Models for default risk measurement according to real-world default probabilities, also taking into account portfolio and rating migration effects, were already introduced in the 90s (KMV, CreditMetrics) and used for internal risk management
 In 2004, the Basel committee first published the Basel II framework, that incorporates some of such advances in the so-called Internal Rating Based (IRB) approach to the computation of the credit risk component of the minimum capital requirement.
 The capital requirement according to the IRB approach is based on a time horizon of one year with a confidence interval of 99.9%

- **2005 – Incremental Default Risk Charge**
 Regulators have taken steps aimed at aligning the minimum capital requirements under the trading book regime to the credit trading risk the banking system has been gaining exposure to.
 The first measure proposed was the *Incremental Default Risk Charge* (IDRC), i.e. an add-on to the regulatory capital to account for default risk in the trading book (first proposed in 2005).
 The capital requirement according to the IDRC approach, as proposed, was based on a *time horizon of one year* with a *confidence interval of 99.9%* like the IRB approach for credit risk
2009 – Incremental Risk Charge and Basel 2.5

Before the enforcement of the IRC and under the pressure caused by the Lehman crisis, regulators published a wide package of measures to strengthen the minimum capital requirement under the trading book regime. This package is commonly cited as Basel 2.5.

Among other measures, the IDRC was modified in order to account also for rating migration risk, thus leading to the Incremental Risk Charge (IRC).

The decision was caused by the widespread economic impact of downgrades (more than defaults).

The introduction of the IRC is expressly meant to address the regulatory arbitrage between banking and trading book.

IRC must be enforced by major banks within December 2011.
Integration of Market Risk & Credit Risk

- Regulatory directions ask to combine two processes:
 1. **Market Process**: The economic profit/loss that is related (for bond-like products) to
 - In case of default: Current market value minus recovery
 - In case of upgrade/downgrade: Re-Pricing (based on a simulated credit spread move)
 2. **Credit Process**: Default & Migration generation

- Differently from Value-at-Risk, no one of the major players attempts to force his model to become the best-practice (like JPM RiskMetrics in the 90s)

- There is, however, a broad convergence regarding the main building block of the IRC, i.e.
 1. to base on **Merton** the credit process for default/migration
 2. to simulate the joint default/migration process thank to a **Gaussian Copula**

- Also broad convergence has been achieved on how to implement a **multi-step** (in time) simulation, based on the **Liquidity Horizon** (LH) concept with the constant level of risk (CLR) assumption enforced across each step
Modelling the economic profit/loss
Market Process

- The simulation of economic profit/loss is well defined in case of default
- In case of rating migration, it requires re-pricing of the positions according to a shock of the spread level
- Calibration of recovery rates and spread changes may allow us to make the model more or less pro-cyclical (point-in-time vs. average-through-the-cycle – real world vs. risk neutral)
- Below an example of credit spread shocks adopted for migrations based on calibrated spread levels

<table>
<thead>
<tr>
<th>Rating</th>
<th>Spread Level</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>C</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td>180</td>
<td>310</td>
<td>660</td>
<td>1360</td>
</tr>
<tr>
<td>AA</td>
<td>80</td>
<td>-40</td>
<td>0</td>
<td>40</td>
<td>140</td>
<td>270</td>
<td>620</td>
<td>1320</td>
</tr>
<tr>
<td>A</td>
<td>120</td>
<td>-80</td>
<td>-40</td>
<td>0</td>
<td>100</td>
<td>230</td>
<td>580</td>
<td>1280</td>
</tr>
<tr>
<td>BBB</td>
<td>220</td>
<td>-180</td>
<td>-140</td>
<td>-100</td>
<td>0</td>
<td>130</td>
<td>480</td>
<td>1180</td>
</tr>
<tr>
<td>BB</td>
<td>350</td>
<td>-310</td>
<td>-270</td>
<td>-230</td>
<td>-130</td>
<td>0</td>
<td>350</td>
<td>1050</td>
</tr>
<tr>
<td>B</td>
<td>700</td>
<td>-660</td>
<td>-620</td>
<td>-580</td>
<td>-480</td>
<td>-350</td>
<td>0</td>
<td>700</td>
</tr>
<tr>
<td>CCC</td>
<td>1400</td>
<td>-1360</td>
<td>-1320</td>
<td>-1280</td>
<td>-1180</td>
<td>-1050</td>
<td>-700</td>
<td>0</td>
</tr>
</tbody>
</table>
Extension of the Merton model to incorporate rating transitions
single obligor

- The asset value process is assumed to follow a geometric Brownian motion
 \[dA_t = \mu A_t dt + \sigma A_t dW_t \]

- Default at time \(T \) is triggered if the asset value is equal or less than the face value of the debt at \(T \)
 \[PD_{t,T} = \Pr\{A_T \leq F_T\} \]

- Incorporating rating levels is easy, define thresholds
 \[-\infty = b_{k+1} < b_k < \ldots < b_1 < b_0 = +\infty \]

- so that making the transition from the current rating, i, to rating, j, is
 \[p_{i,j} = \Pr\{b_j < A_T \leq b_{j+1}\} \]
The Merton Model with rating migrations
Example with standardized variables

<table>
<thead>
<tr>
<th></th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransProb</td>
<td>0.01%</td>
<td>0.16%</td>
<td>4.14%</td>
<td>90.24%</td>
<td>4.28%</td>
<td>0.74%</td>
<td>0.17%</td>
<td>0.26%</td>
</tr>
<tr>
<td>CumulProb</td>
<td>100%</td>
<td>99.99%</td>
<td>99.8%</td>
<td>95.69%</td>
<td>5.45%</td>
<td>1.17%</td>
<td>0.43%</td>
<td>0.26%</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\beta_j & \sim \infty & 3.72 & 2.93 & 1.72 & -1.60 & -2.27 & -2.63 & -2.79 \\
\delta & & & & & & & & \\
\end{align*}
\]
Rating transition (default) matrix

Example

Rating Agencies provide and update with yearly frequency the observed transition probabilities for a vast population of issuers. This piece of information is represented in the form of a yearly transition matrix.

<table>
<thead>
<tr>
<th>Rating as of Jan. 1</th>
<th>#</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC/CC</th>
<th>SD</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>349</td>
<td>97.42</td>
<td>2.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>AA</td>
<td>189</td>
<td>2.12</td>
<td>90.48</td>
<td>6.88</td>
<td>0.53</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>A</td>
<td>273</td>
<td>0.00</td>
<td>2.56</td>
<td>91.94</td>
<td>5.49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>BBB</td>
<td>199</td>
<td>0.00</td>
<td>0.00</td>
<td>5.53</td>
<td>88.44</td>
<td>4.52</td>
<td>1.51</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>BB</td>
<td>196</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.59</td>
<td>86.73</td>
<td>5.61</td>
<td>1.53</td>
<td>1.53</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>196</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>8.67</td>
<td>84.69</td>
<td>2.55</td>
<td>2.04</td>
<td>2.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CCC/CC</td>
<td>19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>47.37</td>
<td>42.11</td>
<td>10.53</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Do rating transitions follow a time-homogeneous Markov chain?

- Rating Agencies provide transition matrixes over several time horizons, ranging from one-year to ten years
- Data contradict the hypothesis according to which rating migrations follow a time-homogeneous Markov chain

Sovereign Local-Currency Average Five-Year Transition Rates (1993-2010)*

<table>
<thead>
<tr>
<th>Rating as of Jan. 1</th>
<th>#</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC/CC</th>
<th>SD</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>270</td>
<td>87.4</td>
<td>12.2</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AA</td>
<td>136</td>
<td>9.6</td>
<td>58.8</td>
<td>27.9</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A</td>
<td>173</td>
<td>0.0</td>
<td>12.1</td>
<td>69.9</td>
<td>15.6</td>
<td>1.7</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BBB</td>
<td>134</td>
<td>0.0</td>
<td>0.0</td>
<td>24.6</td>
<td>48.5</td>
<td>17.2</td>
<td>6.0</td>
<td>0.8</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BB</td>
<td>113</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>22.1</td>
<td>48.7</td>
<td>19.5</td>
<td>2.7</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>101</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>5.9</td>
<td>38.6</td>
<td>44.6</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>CCC/CC</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.1</td>
<td>7.1</td>
<td>50.0</td>
<td>7.1</td>
<td>28.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

---Rating five years later (%) - Fifth power of the one-year restated transition matrix

<table>
<thead>
<tr>
<th>Rating as of Jan. 1</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC/CC</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>88.2</td>
<td>10.1</td>
<td>1.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AA</td>
<td>8.3</td>
<td>62.4</td>
<td>24.3</td>
<td>4.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A</td>
<td>0.4</td>
<td>9.0</td>
<td>69.3</td>
<td>18.6</td>
<td>1.8</td>
<td>0.7</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>BBB</td>
<td>0.0</td>
<td>1.0</td>
<td>18.6</td>
<td>57.8</td>
<td>14.6</td>
<td>6.5</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>BB</td>
<td>0.0</td>
<td>0.1</td>
<td>1.8</td>
<td>13.9</td>
<td>54.1</td>
<td>19.8</td>
<td>2.4</td>
<td>7.8</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>2.7</td>
<td>26.0</td>
<td>56.8</td>
<td>3.5</td>
<td>10.6</td>
</tr>
<tr>
<td>CCC/CC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>16.7</td>
<td>54.1</td>
<td>4.2</td>
<td>23.8</td>
</tr>
</tbody>
</table>
Alternative processes

■ Time-inhomogeneous Markov chains?
Empirical multi-year default frequencies can be interpolated well by continuous-time Markov chains if the Markov chain is allowed to evolve with non-homogeneous behaviour in time [4], but…

■ Is rating transition (default) a path dependent process?
Rating agencies’ data show evidence of rating path dependency (analysis referred to corporate in the period 1991-2002 [6])

<table>
<thead>
<tr>
<th>Rating Change Momentum: 1991–2002 (%)</th>
<th>Downgraded in t</th>
<th>Upgraded in t</th>
<th>Unchanged in t</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Corporate Finance Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downgraded in t-1</td>
<td>26.6</td>
<td>7.6</td>
<td>65.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Upgraded in t-1</td>
<td>7.1</td>
<td>16.2</td>
<td>76.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Unchanged in t-1</td>
<td>10.9</td>
<td>7.2</td>
<td>82.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Unconditional</td>
<td>12.1</td>
<td>8.1</td>
<td>79.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

This has been addressed in [7] under the assumption the issuers’ universe is composed by two families, following two distinct Markov processes (fast and slow)
Consequences on capital

- **Increase the pro-cyclicality of the capital charge**

 Downgrading/default probabilities tend to increase, conditional on the realised downgrades/default

- **Cause heavy tails in the loss distribution function**

 Multi-step simulations could reveal, at the required quantile (99.9%), an increased number of downgrading/defaults compared to simulations based on time-homogeneous Markov chains caused by “adverse paths”, without modifications of the correlation structure between obligors.
Multi-obligor Merton Model

- Standardized asset \((A_i) \), \(i=1,\ldots,M \) log-returns of \(M \) obligors over a given horizon \(T \) is

\[
\ln \left(\frac{A_{i,T}}{A_{i,0}} \right) = \rho_i X_i + \sqrt{1 - \rho_i^2} \varepsilon_i
\]

- Where:
 - \(X_i \) is called the composite factor of obligor \(i \), sampled from a multivariate standard normal distribution
 - \(\varepsilon_i \) is the idiosyncratic factor of obligor \(i \), sampled from an univariate standard normal distribution
 - \(\rho_i \) captures the linear correlation of the return of the issuer asset \(A_i \) and the composite factor

- The formula represents a division into systematic and specific risk
- The \(X_i \) and \(\varepsilon_i \) are all assumed to be independent, so that the returns are independent conditional upon the realization of the composite factors
Merton Single-factor model

- The limit case in which the stochastic variable X_i is the same across all obligors is the single-factor model:

$$\ln\left(\frac{A_{i,T}}{A_{i,0}}\right) = \rho_i Z + \sqrt{1 - \rho_i^2} \varepsilon_i$$

- Based on this assumption, the market is represented by a scalar variable Z, conditioning all the obligors and the correlation structure is defined by the set $\{\rho_i\}_{i=1,\ldots,M}$

- The BCBS based founded the Internal Rating Based (IRB) approach for the evaluation of the solvency ratio across the banking system on a single-factor model, the Asymptotic Single Risk Factor (ASRF) model [9,10].
Merton Multi-factors models

In the more general case, the stochastic variable X_i is driven by a more detailed set of systematic factors.

Reflecting industry standard practice, an example would be the decomposition into K regional/country-specific and/or industrial factors [8]. In this case the log-return of the standardized asset for the i-th obligor reads:

$$
Ln\left(\frac{A_{i,T}}{A_{i,0}}\right) = \rho_i (w_i \cdot \eta_i) + \sqrt{1 - \rho_i^2} \varepsilon_i
$$

Where:

- η_i is sampled from a multivariate standard normal distribution, with dimension K and with correlation matrix C
- w_i is the vector of the weights for the i-th obligor

The correlation structure in multi-factors models is assigned by:

1. the inter-sector correlation matrix C
2. the infra-sector correlations ρ_i
Calibration of the correlation structure

- **Single-factor models:**
 Correlations $R_{ij} = \rho_i \rho_j$ represent directly the correlation between the standardized assets of two obligors.

- **Multi-factor models:**
 The correlation between the standardized assets of two obligors is the combination of the inter-sector and infra-sector correlations as:
 \[
 R_{ij} = \rho_i \mathbf{w}_i^T \mathbf{C} \mathbf{w}_j \rho_j
 \]

 - Merton’s standardized assets are latent variables (not directly observable)
 - Two alternative calibration processes arise from:
 1. Equity prices & financial statement data
 2. Credit Default Swaps quotes
1. Equity prices & financial statement data

- Merton – process for the asset A_t:

$$E_t = A_t \Phi(d_1) - F e^{-r(t-T)} \Phi(d_2)$$

Where:

$$d_{1/2} = \frac{\ln \left(\frac{A_t}{F} \right) + \left(r \pm \frac{1}{2} \sigma^2(T-t) \right)}{\sigma \sqrt{T-t}}$$

- Equity is an European call on the firm’s asset A with strike equal to the face value of the liabilities F
- Merton’s stylized model assumes the liability is a zero-coupon bond maturing at T (i.e. the expiry of the call). As a consequence, default can only happen at T
- The face value of liabilities F can be evaluated on the basis of low-frequency financial statements’ data
2. Credit Default Swaps (CDSs) quotes

- The CDS market provides at time t a way to estimate (risk neutral) default probabilities ($PD_{t,T}$) at expiry T
- CDS quotes are available as high-frequency market data (let be $1/\delta$ the frequency)
- By assuming (Merton) that the log asset value $\ln(A_T)$ is a normally-distributed stochastic variable, it follows:

$$PD_{t,T} = \Phi \left[\frac{\ln(F_T) - \ln(A_t)}{\sigma \sqrt{T-t}} \right]$$

- Under the assumption that the face value of the firm’s liability at time T (F_T) does not change rapidly in time, we can assume that changes in the default probabilities are due to changes in the asset value, so that:

$$\ln\left(\frac{A_{t+\delta}}{A_t} \right) = \sigma \sqrt{T-t} \left[\Phi^{-1}(PD_{t+\delta,T}) - \Phi^{-1}(PD_{t,T}) \right]$$

- Asset correlation can be therefore estimated w/o assumptions on the asset volatility
- This approach to asset correlation calibration is detailed in [12]
Correlation structure according to the IRB model

- Asset correlations of the IRB approach for corporate, bank and sovereign issuers have been set by regulators thanks to their data sets including accounting and default data.
- The analysis revealed two systematic dependencies:
 1. Asset correlations decrease with increasing PDs
 2. Asset correlations increase with firm size
- Regulators set an analytical formula for $R_i = \rho_i \rho_i$. Inputs are only the obligors’ PD and annual sales. Below the chart of R_i for large firms (more than € 50 mn annual sales)

Source: An Explanatory Note on the Basel II IRB Risk Weight Functions, BCBS July 2005
Correlation structure calibrated on historical equity prices

- An example of calibration from equity prices & financial statement data is provided in [11], based on Moody’s KMV asset values for around 2,000 European firms from 1996 to 2004.

- The chart below shows the evolution in time of the median R_i, compared to the median annual Expected Default Frequency (EDF).

![Chart showing the evolution of median market correlations and mean EDF over time.](chart.jpg)

- Results show asset correlations in line with the IRB formula.
Correlation structure calibrated on historical CDS quotes

- An example of calibration from CDS quotes is shown in the chart below, shows the evolution in time of R for the obligor Deutsche Bank, compared with the spread of the CDS and of the corresponding credit index (iTraxx financials – the most traded 25 financial issuers in Europe)

Source: UniCredit internal data

- Results show asset correlation in line with the IRB formula only before the crisis start
Consequences on capital

- **Increase the pro-cyclicality of the capital charge**
 In periods of market stress, correlations tend to increase, thus leading to increased capital charges

- **Cause larger unexpected losses**
 For gaussian-copulas, correlations, among other model parameters, are the most effective in driving the capital calculation

Lack of consensus on the way the correlation structure is calibrated across the banking industry
The simulation of rating migrations (including default) is split into time steps of the length of the liquidity horizon until the capital horizon of one year is achieved.

At the end of each step, the portfolio is re-balanced in order to match the original composition.

A shorter LH is favourable in case of exposures to Investment Grade obligors (with low annual migration/default probabilities).
IRC implementation outline

1. Define IRC model positions - Π_0
2. Assign to liquidity buckets
3. Starting at $t=t_0$ for each time $t=t_i$
 - Simulate the credit process for the whole universe of obligors until $t=t_i+1$
 - Mark all positions to model using current time and ratings
 - Calculate P&L
 - Rebalance according to trading strategy (constant level of risk)
 - Redo until $t=T$ (capital horizon)
4. Redo step 3 N times
5. Calculate 99.9% quantile of P&L distribution
Some Results
IRC profit&loss distribution

- 99.9 percentile of the loss distribution would be the IRC. Although this is a loss distribution, it has profits as the portfolio includes both long and short credit positions.
- Unlike many common cases in VaR simulations, the loss distribution of IRC is non-symmetric.
- In case of an investment-grade portfolio, *paying a visit* to the a number of available rating states (including default) that is statistically relevant for all obligors may require the number of paths N to be much higher than the common Monte Carlo simulations used for VaR (N of the order of 10^6).

![P&L Dist at 6M](chart)
Conclusions

- Credit trading strategies are currently widespread, with main focus on sovereign, rather than corporate, risk
- Measuring credit risk in trading portfolios is a key topic both for internal risk management and regulatory capital (IRC add-on)
- The proper evaluation of default and credit migration risk under the constant level of risk assumption translates into the call for modeling portfolio credit risk in the framework of short-term, multi-step simulations
- The current best practice in the financial industry is Merton & Gaussian Copula
- This choice has the fundamental advantage of being parsimonious in the number of parameters
- Critical and unresolved issues are:
 1. The difficulty in adapting to this problem the mainstream treatment of portfolio credit risk by continuous-time Markov Chains applied to the rating migration process
 2. The lack of an unambiguous approach to the estimation of asset correlations, leading to large discrepancies in the capital level required by the various models developed so far
References

Annex 1
Basel 2.5 at a glance

<table>
<thead>
<tr>
<th>Year</th>
<th>Document</th>
<th>Main Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul-05</td>
<td>The Application of Basel II to Trading Activities and the Treatment of Double Default Effects</td>
<td>Counterparty risk and Double Default on OTC derivatives. Improvements to the trading book regime, especially specific risk. IDRC.</td>
</tr>
<tr>
<td>Jul-08</td>
<td>Guidelines for Computing Capital for Incremental Risk in the Trading Book</td>
<td>IRC</td>
</tr>
<tr>
<td>Jul-08</td>
<td>Proposed revisions to the Basel II market risk framework</td>
<td>IRC + Qualitative Standards in Risk Management</td>
</tr>
<tr>
<td>Jul-09</td>
<td>Enhancements to the Basel II framework</td>
<td>Securitisation, ReSecuritisations, Secific Risk (e.g. concentration)</td>
</tr>
<tr>
<td>Jul-09</td>
<td>Revisions to the Basel II market risk framework (BCBS 158)</td>
<td>SVaR, IRC, CRM, Secturitisations</td>
</tr>
<tr>
<td>Jul-09</td>
<td>Guidelines for computing capital for incremental risk in the trading book (BCBS 159)</td>
<td>IRC</td>
</tr>
</tbody>
</table>
Annex 2
IRC – Regulatory Requirements (1/2)

■ Scope

1. encompasses all positions subject to a capital charge for specific interest rate ... with the exception of securitisation exposures and n-th-to-default credit derivatives;
2. a bank can choose consistently to include all listed equity and equity derivatives ...

■ Loss Events Definition

1. includes direct or indirect losses due to an obligor’s default as well as to an internal/external rating downgrade or upgrade;
2. must measure losses due to default and migration at the 99.9 percent confidence interval over a capital horizon of one year, taking into account the liquidity horizons applicable to individual trading positions;
3. impact of re-balancing positions at the end of their liquidity horizons so as to achieve a constant level of risk (CLR) over a one-year capital horizon should be captured.
 ▶ Positions are rebalanced in a manner that maintains the initial risk level
 ▶ Positions whose credit characteristics have changed are replaced with others with the same risk characteristics the original had at the start of the liquidity horizon.
Annex 2
IRC – Regulatory Requirements (2/2)

■ Liquidity Horizon

1. The liquidity horizon represents the **time required to sell the position or to hedge** all material risks covered by the IRC model in a stressed market.
2. The liquidity horizon for a position or set of positions has a floor of **three months**.
3. A non-investment-grade position is expected to have a longer assumed liquidity horizon than an investment-grade position.
4. The liquidity horizon is expected to be greater for positions that are concentrated.
5. A bank may elect to use a one-year constant position assumption.

■ Portfolio Effects

1. … includes the impact of **correlations between default and migration** events among obligors.
2. … the impact of **diversification** between default or migration events and other market variables would **not be reflected** in the computation.
3. A bank’s IRC model must appropriately reflect **issuer and market concentrations**.
Annex 3
Current iTraxx 125 basket

Market iTraxx Europe: Reference Portfolio

<table>
<thead>
<tr>
<th>Reference Entity</th>
<th>Weight %</th>
<th>Reference Entity</th>
<th>Weight %</th>
<th>Reference Entity</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ADNOC</td>
<td>0.00</td>
<td>43. EON</td>
<td>0.00</td>
<td>86. RWE Aktiengesellschaft</td>
<td>0.00</td>
</tr>
<tr>
<td>2. Aegon N.V.</td>
<td>0.00</td>
<td>44. EDISON S.P.A</td>
<td>0.00</td>
<td>87. RENTCOM INITIAL PLC</td>
<td>0.00</td>
</tr>
<tr>
<td>3. Airtel Networks</td>
<td>0.00</td>
<td>45. EDP - Energias de Portugal, S.A.</td>
<td>0.00</td>
<td>88. REPSOL, S.A.</td>
<td>0.00</td>
</tr>
<tr>
<td>5. Airtel Italia N.V.</td>
<td>0.00</td>
<td>46. ELECTRICITE DE FRANCE</td>
<td>0.00</td>
<td>89. ROLLIS-ROYCE plc</td>
<td>0.00</td>
</tr>
<tr>
<td>6. Alcatel SE</td>
<td>0.00</td>
<td>47. ENERGIE ELEKTRONIKS WURTTEMBERG AG</td>
<td>0.00</td>
<td>90. RWE Aktiengesellschaft</td>
<td>0.00</td>
</tr>
<tr>
<td>7. ALSTOM</td>
<td>0.00</td>
<td>48. ENEA S.P.A</td>
<td>0.00</td>
<td>91. SAFETYAV LTD</td>
<td>0.00</td>
</tr>
<tr>
<td>8. Anglian American plc</td>
<td>0.00</td>
<td>49. ENI S.P.A.</td>
<td>0.00</td>
<td>92. SANOFI-AVENTIS</td>
<td>0.00</td>
</tr>
<tr>
<td>9. Acalasul</td>
<td>0.00</td>
<td>50. European Aerospace Defence and Space Company EADS N.V</td>
<td>0.00</td>
<td>93. Siemens Aktiengesellschaft</td>
<td>0.00</td>
</tr>
<tr>
<td>10. ASSICURAZIONI GENERALI - SOCIETÀ PER AZIONI</td>
<td>0.00</td>
<td>51. EUPHORIAN FINANCE PLC</td>
<td>0.00</td>
<td>94. SOCIETE GENERALE</td>
<td>0.00</td>
</tr>
<tr>
<td>11. ASTRA</td>
<td>0.00</td>
<td>52. FINAMECANICA S.P.A.</td>
<td>0.00</td>
<td>95. SODEIC</td>
<td>0.00</td>
</tr>
<tr>
<td>12. AYA</td>
<td>0.00</td>
<td>53. Fortune Oil</td>
<td>0.00</td>
<td>96. VOYER</td>
<td>0.00</td>
</tr>
<tr>
<td>13. BAE SYSTEMS PLC</td>
<td>0.00</td>
<td>54. FRANCE TELECOM</td>
<td>0.00</td>
<td>97. STH Microelectronics N.V</td>
<td>0.00</td>
</tr>
<tr>
<td>14. BANCA MONTE DEI PASSI DI Siena S.P.A.</td>
<td>0.00</td>
<td>55. GAS NATURAL SGS, S.A.</td>
<td>0.00</td>
<td>98. Südwestdeutsche Aktiengesellschaft</td>
<td>0.00</td>
</tr>
<tr>
<td>15. BANCO BILBAO VIZCAYA ARGENTARIA, SOCIEDAD ANONYMA</td>
<td>0.00</td>
<td>56. GOF SUEZ</td>
<td>0.00</td>
<td>99. Svenska Cellulosa Aktiebolaget SCA</td>
<td>0.00</td>
</tr>
<tr>
<td>16. BANCO POPULARE SOCIETÀ COOPERATIVA</td>
<td>0.00</td>
<td>57. Gazprom International AG</td>
<td>0.00</td>
<td>100. Swedish Match AB</td>
<td>0.00</td>
</tr>
<tr>
<td>17. BANCO SANTANDER, S.A.</td>
<td>0.00</td>
<td>58. GROUPE MACHIN</td>
<td>0.00</td>
<td>101. Swiss Reinsurance Company Ltd</td>
<td>0.00</td>
</tr>
<tr>
<td>18. BARCLAYS BANK PLC</td>
<td>0.00</td>
<td>59. Hansaerische Kreditanstalt AG</td>
<td>0.00</td>
<td>102. TATE & LYLE PUBLIC LIMITED COMPANY</td>
<td>0.00</td>
</tr>
<tr>
<td>21. Bayerische Motoren Werke Aktiengesellschaft</td>
<td>0.00</td>
<td>60. Hilti AG & Co. KGaA</td>
<td>0.00</td>
<td>103. TELECOM ITALIA SPA</td>
<td>0.00</td>
</tr>
<tr>
<td>22. Beftron AG</td>
<td>0.00</td>
<td>61. Hitachi Ltd</td>
<td>0.00</td>
<td>104. TELERIGA, S.A.</td>
<td>0.00</td>
</tr>
<tr>
<td>23. BNP PARIBAS</td>
<td>0.00</td>
<td>62. IBERDROLA, S.A.</td>
<td>0.00</td>
<td>105. Teilnahmesivruckverrechtigungsgesellschaft</td>
<td>0.00</td>
</tr>
<tr>
<td>24. EDF PLC</td>
<td>0.00</td>
<td>63. IMPERIAL TOBACCO GROUP PLC</td>
<td>0.00</td>
<td>106. TELEFONICA A.G.</td>
<td>0.00</td>
</tr>
<tr>
<td>26. BRITISH AMERICAN TOBACCO p.l.c.</td>
<td>0.00</td>
<td>64. INTESA SANPAOLO SPA</td>
<td>0.00</td>
<td>107. Toll/Sanoma Aktiebolag</td>
<td>0.00</td>
</tr>
<tr>
<td>28. BRITISH TELECOMMUNICATIONS</td>
<td>0.00</td>
<td>65. JT (UK) FINANCE PLC</td>
<td>0.00</td>
<td>108. TESCO PLC</td>
<td>0.00</td>
</tr>
<tr>
<td>29. BOSCH Holdings Limited</td>
<td>0.00</td>
<td>66. KINGFISHER PLC</td>
<td>0.00</td>
<td>109. "THE ROYAL BANK OF SCOTLAND PUBLIC LIMITED COMPANY"</td>
<td>0.00</td>
</tr>
<tr>
<td>31. BOSCH-WESTINGHOUSE ELECTRIC CORPORATION</td>
<td>0.00</td>
<td>67. Koninklijke Ahoy N.V.</td>
<td>0.00</td>
<td>110. TINT N.V.</td>
<td>0.00</td>
</tr>
<tr>
<td>33. BP</td>
<td>0.00</td>
<td>68. Koninklijke DSM N.V.</td>
<td>0.00</td>
<td>111. "TNT GLOBAL TRADE AND SHIPPING"</td>
<td>0.00</td>
</tr>
<tr>
<td>34. BNP Paribas</td>
<td>0.00</td>
<td>69. Koninklijke Phillips Electronics N.V.</td>
<td>0.00</td>
<td>112. "TOSO"</td>
<td>0.00</td>
</tr>
<tr>
<td>37. CARRÉFOUR SA</td>
<td>0.00</td>
<td>70. LAVOISIER Aktiengesellschaft</td>
<td>0.00</td>
<td>113. "UNICREDIT, SOCIETÀ PER AZIONI"</td>
<td>0.00</td>
</tr>
<tr>
<td>38. CASINO GOURMET-PERRACHON</td>
<td>0.00</td>
<td>71. Liebherr-Gebr. Ruhrgas GmbH</td>
<td>0.00</td>
<td>114. Unibail-Rodamco</td>
<td>0.00</td>
</tr>
<tr>
<td>39. CSiro</td>
<td>0.00</td>
<td>72. Linde Aktiengesellschaft</td>
<td>0.00</td>
<td>115. United Utilities PLC</td>
<td>0.00</td>
</tr>
<tr>
<td>40. Deutsche Post AG</td>
<td>0.00</td>
<td>73. LLOYDS TSB BANK plc</td>
<td>0.00</td>
<td>116. Vodafone AirTouch</td>
<td>0.00</td>
</tr>
<tr>
<td>42. DAIMLER AG</td>
<td>0.00</td>
<td>74. LVMH MOET HENNESSY LOUIS VUITTON</td>
<td>0.00</td>
<td>117. VEOLIA ENVIRONNEMENT</td>
<td>0.00</td>
</tr>
<tr>
<td>43. Daimler AG</td>
<td>0.00</td>
<td>75. Marks & Spencer PLC</td>
<td>0.00</td>
<td>118. VON MUNCHEN</td>
<td>0.00</td>
</tr>
<tr>
<td>44. Daimler AG</td>
<td>0.00</td>
<td>76. METRO AG</td>
<td>0.00</td>
<td>119. VION</td>
<td>0.00</td>
</tr>
<tr>
<td>45. Deutsche Post AG</td>
<td>0.00</td>
<td>77. Münchenner Rückversicherungs-Gesellschaft Aktiengesellschaft in München</td>
<td>0.00</td>
<td>120. VOYAGER GROUP PUBLIC LIMITED COMPANY</td>
<td>0.00</td>
</tr>
<tr>
<td>46. Daimler AG</td>
<td>0.00</td>
<td>78. NATIONAL GRID PLC</td>
<td>0.00</td>
<td>121. VOLKSWAGEN AKTIENGESELLSCHAFT</td>
<td>0.00</td>
</tr>
<tr>
<td>47. Daimler AG</td>
<td>0.00</td>
<td>79. Nestlé S.A.</td>
<td>0.00</td>
<td>122. WELLSFARGO INVESTMENTS (EUROPE) LIMITED</td>
<td>0.00</td>
</tr>
<tr>
<td>48. Deutsche Telekom AG</td>
<td>0.00</td>
<td>80. NEKTOS PLC</td>
<td>0.00</td>
<td>123. "WPP 2006 LIMITED"</td>
<td>0.00</td>
</tr>
<tr>
<td>49. Diageo PLC</td>
<td>0.00</td>
<td>81. NIKKO Oyj</td>
<td>0.00</td>
<td>124. "ASTRATA PLC"</td>
<td>0.00</td>
</tr>
<tr>
<td>50. Portugal Telecom International Finance B.V.</td>
<td>0.00</td>
<td>82. NIKKA Oyj</td>
<td>0.00</td>
<td>125. "ZURICH INSURANCE COMPANY LTD"</td>
<td>0.00</td>
</tr>
<tr>
<td>51. PORTUGAL TELECOM INTERNATIONAL FINANCE B.V.</td>
<td>0.00</td>
<td>83. "ZURICH INSURANCE COMPANY LTD"</td>
<td>0.00</td>
<td>126. "ZURICH INSURANCE COMPANY LTD"</td>
<td>0.00</td>
</tr>
<tr>
<td>52. PORTUGAL TELECOM INTERNATIONAL FINANCE B.V.</td>
<td>0.00</td>
<td>84. "ZURICH INSURANCE COMPANY LTD"</td>
<td>0.00</td>
<td>127. "ZURICH INSURANCE COMPANY LTD"</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Annex 4
Current iTraxx SovX WE basket

Markit iTraxx SovX Western Europe Series 5 Final Membership List

<table>
<thead>
<tr>
<th>Markit Ticker</th>
<th>Reference Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBR</td>
<td>Federal Republic of Germany</td>
</tr>
<tr>
<td>FRTR</td>
<td>French Republic</td>
</tr>
<tr>
<td>GREECE</td>
<td>Hellenic Republic</td>
</tr>
<tr>
<td>IRELAND</td>
<td>Ireland</td>
</tr>
<tr>
<td>BELG</td>
<td>Kingdom of Belgium</td>
</tr>
<tr>
<td>DENK</td>
<td>Kingdom of Denmark</td>
</tr>
<tr>
<td>NORWAY</td>
<td>Kingdom of Norway</td>
</tr>
<tr>
<td>SPAIN</td>
<td>Kingdom of Spain</td>
</tr>
<tr>
<td>SWED</td>
<td>Kingdom of Sweden</td>
</tr>
<tr>
<td>NETNRS</td>
<td>Kingdom of the Netherlands</td>
</tr>
<tr>
<td>PORTUG</td>
<td>Portuguese Republic</td>
</tr>
<tr>
<td>AUST</td>
<td>Republic of Austria</td>
</tr>
<tr>
<td>FINL</td>
<td>Republic of Finland</td>
</tr>
<tr>
<td>ITALY</td>
<td>Republic of Italy</td>
</tr>
<tr>
<td>UKIN</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
</tbody>
</table>