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This work and the exponentiation theorem

In earlier talks, I presented the diamond product and the
exponentiation theorem.

Manipulations were formal and the convergence properties of
the resulting forest expansion unclear.

Eventually published as Elisa Alòs, Jim Gatheral, and Radoš
Radoičić, Exponentiation of conditional expectations under
stochastic volatility, Quantitative Finance 20(1):13–27, 2020.

This time I explain the remarkably simple origin of the forest
expansion, I give its convergence properties and attempt to
give a sense of its wide applicability.
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The diamond product

Definition

Given two continuous semimartingales A,B with integrable
covariation process 〈A,B〉, the diamond producta of A and B is
another continuous semimartingale given by

(A � B)t(T ) := Et [〈A,B〉t,T ] = Et [〈A,B〉T ]− 〈A,B〉t ,

where 〈A,B〉t,T = 〈A,B〉T − 〈A,B〉t .
aWarning. Our diamond product is (very) different from the Wick product.
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Properties of the diamond product

Commutative: A � B = B � A.

Non-associative: (A � B) � C 6= A � (B � C ).

A � B depends only on the respective martingale parts of A
and B.

A � B is in general not a martingale.
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The G-forest expansion

Theorem 1 (Theorem 1.1 of [FGR20])

Let YT be a real-valued, FT -measurable random variable with
associated martingale Yt = Et [YT ]. Under natural integrability
conditions, with a, b small enough, there is a.s. convergence of

logEt

[
eaYT +b〈Y 〉T

]
= aYt + b〈Y 〉t +

∑
k≥2

Gk
t (T ), (1)

where

G2 =

(
1

2
a2 + b

)
(Y � Y )t(T ),

Gk =
1

2

k−2∑
j=2

Gk−j �Gj + (a Y �Gk−1) for k > 2. (2)
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Idea of the proof

For a generic (continuous) semimartingale Z , sufficiently
integrable, let

ΛT
t = logEt

[
eZt,T

]
.

Then, noting that ΛT
T = 0,

Et

[
eZT

]
= Et

[
eZT +ΛT

T

]
= eZt+ΛT

t .

The stochastic logarithm L (E•(ZT )) = Z + ΛT + 1
2〈Z + ΛT 〉 is a

martingale. Thus,

ΛT
t = Et

[
Zt,T + 1

2〈Z + ΛT 〉t,T
]

= Et [Zt,T ] + 1
2 ((Z + ΛT ) � (Z + ΛT ))t(T ).
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Now with1 Z = εaY + ε2 b〈Y 〉 we get

ΛT
t (ε) = εaEt [Yt,T ] + ε2 b (Y � Y )t(T ) + 1

2

(
εaY + ΛT

t (ε)
)�2
t

(T ) .

Put ΛT
t (ε) = ε2G2

t + ε3G3
t + ..., and match coefficients of εn.

[ε2]: G2
t = b (Y � Y )t(T ) + 1

2a
2 (Y � Y )t(T ).

[ε3]: G3
t = (a Y �G2)t(T ).

[ε4]: G4
t = (a Y �G3)t(T ) + 1

2 (G2 �G2)t(T ).

We see the recursion (2) emerge!

1Recall that terms of bounded variation such as 〈Y 〉 do not contribute to
diamond products.
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Special cases

Interesting special cases include

The exponential martingale: b = −1
2a

2. All corrector terms
Gk vanish.

The G-expansion can thus be seen as a “broken exponential
martingale” expansion.

The F-forest expansion of [AGR2020] (working paper 2017):
1
2a + b = 0.

The F-forest expansion gives a general expression for the
characteristic function of the log-stock price in a stochastic
volatility model written in forward variance form.

The cumulant (K-forest) expansion of Lacoin-Rhodes-Vargas
[LRV19]: b = 0.

Their expansion was derived in the context of renormalization
of the sine-Gordon model in quantum physics.
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Further applications

In [FGR20], we give a number of applications.

Other possible applications include

computation of likelihood functions in statistics,
computation of correlation functions in statistical physics,
computation of amplitudes in quantum field theory.

It’s very satisfying that problems in quantitative finance and
quantum physics lead to the same nice mathematics!
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Trees and forests

The general term Gn
t (T ) in (2) is naturally written as a linear

combination of binary diamond trees2.

Hence the terminology G-forest expansion for (1).

Specifically, writing as a short-hand for Y , interpreted as
single leaf, we have

G2 = ( 1
2a

2 + b)

G3 = a ( 1
2a

2 + b)

G4 = 1
2 ( 1

2a
2 + b)2 + a2 ( 1

2a
2 + b)

G5 = a ( 1
2a

2 + b)2 + 1
2a ( 1

2a
2 + b)2

+a3 ( 1
2a

2 + b) (3)

2Trees stolen from [Hai13]!
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The K-forest expansion

As mentioned earlier, the K-forest expansion (K for “Kumulant”)
is obtained by setting b = 0 in (1). This gives

K2 = 1
2a

2

K3 = 1
2a

3

K4 = 1
8a

4 + 1
2a

4

K5 = 1
4a

5 + 1
8a

5 + 1
2a

5

With K1 = , the K-recursion follows naturally.
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The K-forest expansion

Theorem 2 (Theorem 1.2 of [FGR20])

Let AT be FT -measurable with N ∈ N finite moments. Then the
recursion

Kn+1
t (T ) =

1

2

n∑
k=1

(Kk �Kn+1−k)t(T ), ∀n > 0

with K1
t (T ) := Et [AT ] is well-defined up to KN and, for a ∈ R,

logEt

[
eiaAT

]
=

N∑
n=1

(ia)n Kn
t (T ) + o(|a|N)

which identifies n!×Kn
t (T ) as the (time t-conditional) n.th

cumulant of AT .
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Example: K3 and the third central moment

For higher n, the forest expansion encodes relations that are
increasingly complex to derive by hand.

For example, from the forest expansion we have

K3
t (T ) = 1

2 (Y � (Y � Y ))t(T )

and also, since the third cumulant is the third central moment,

K3
t (T ) =

1

3!
Et

[
Yt,T

3
]
.

On the other hand, the relation

1
2 (Y � (Y � Y ))t(T ) =

1

3!
Et

[
Yt,T

3
]

is not so obvious.
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Another application: MGF of the Lévy area

Theorem (P. Lévy)

Let {X ,Y } be 2-dimensional standard Brownian motion, and
stochastic (“Lévy”) area be given by

At =

∫ t

0
(Xs dYs − Ys dXs) .

Then, for T ∈
(
− π

2 ,
π
2

)
,

E0

[
eAT

]
=

1

cosT
.

In particular, we will see how to compute trees in practice.
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First term

First,

K2 =
1

2
=

1

2
(A � A)t(T )

=
1

2

∫ T

t

(
Et

[
X 2
s

]
+ Et

[
Y 2
s

])
ds

=
1

2
(T − t)2 +

1

2
(X 2

t + Y 2
t ) (T − t).

In particular,

dK2
s = (Xs dXs + Ys dYs)(T − s) + BV,

where BV denotes a bounded variation term.

Note that BV terms do not contribute to diamond trees.
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Second term

Similarly, recalling that dK1
s = Xs dYs − Ys dXs ,

K3 = K1 �K2 =

= Et

[∫ T

t
d〈K1,K2〉s

]
= Et

[∫ T

t
[XY d〈Y 〉s − YX d〈X 〉s ] (T − s)

]
= 0.

It is easy to check that all odd forests vanish.
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K4

K4 =
1

2
K2 �K2 =

1

2

=
1

2
Et

[∫ T

t

[
X 2
s d〈X 〉s + Y 2

s d〈Y 〉s
]

(T − s)2

]
=

1

2

∫ T

t

(
Et

[
X 2
s

]
+ Et

[
Y 2
s

])
(T − s)2 ds

=

∫ T

t
(s − t) (T − s)2 ds +

1

2
(X 2

t + Y 2
t )

∫ T

t
(T − s)2 ds

=
1

12
(T − t)4 +

1

2
(X 2

t + Y 2
t )

1

3
(T − t)3.

It is now clear how to extend this computation to all orders.
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The general pattern

We see that for each even n, Kn
t (T ) = an I

(n)
t (T ) for some an ∈ Q

where

I
(n)
t (T ) =

1

2

∫ T

t

(
Et

[
X 2
s

]
+ Et

[
Y 2
s

])
(T − s)n−2 ds

=
(T − t)n

n(n − 1)
+

1

2
(X 2

t + Y 2
t )

1

n − 1
(T − t)n−1.

To compute the forests Kn, we need the following lemma.

Lemma

(
I (m) � I (n)

)
t

(T ) =
2

(m − 1)(n − 1)
I

(n+m)
t (T ).
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More terms

Note from above that K2 = I (2) and K4 = I (4).

Applying the lemma

K6 = I (4) � I (2) =
2

3 · 1
I (6)

=
(T − t)6

45
+

2

3

1

2
(X 2

t + Y 2
t )

1

5
(T − t)5.

In principle, we could go on for ever, computing forests (or
cumulants) in this way.

As we show in [FGR20], without much extra effort, we can
sum all these cumulants and so recover Lévy’s theorem.

Remark

As a comparison, Levin and Wildon[LW08] obtain Lévy’s theorem
from (a much harder) moment expansion.
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A bivariate K-expansion

Let K1
t = Et [a YT + b 〈Y 〉t,T ] ≡ a + b . Then

K1 = a + b

K2 = 1
2 (a + b )�2 = 1

2a
2 + ab + 1

2b
2

K3 = 1
2a

3 + 1
2a

2b + a2b + ab2 + 1
2ab

2 + ...

K4 = 1
2a

4 + 1
23 a

4 + 1
2a

3b + 1
2a

3b

+a3b + 1
2a

3b + ...

K5 = 1
2a

5 + 1
23 a

5 + 1
22 a

5 + ... (4)
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Forest reordering

We see that the G-recursion is equivalent to the bivariate
K-recursion applied to AT = aYT + b 〈Y 〉T , after forest
reordering.

Reorder by collecting all trees with the same number of leaves.
G-forests consist of trees which are homogenous in the number
of leaves but not in a, b.

Note also that forest reordering resolves the infinite
cancellations present in the bivariate K-expansion.

To see this put b = − 1
2a

2 in (4) – we see a very complicated
expression which must sum to zero.
On the other hand putting b = − 1

2a
2 in (3) trivially results in

zero.
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Forward variance models

Let S be a strictly positive continuous martingale.

Then X := log S is a semimartingale with quadratic variation
process 〈X 〉.
Following [BG12], it is natural to specify a model in forward
variance form.

vt dt := d〈X 〉t
ξt(T ) = Et [vT ] .

Forward variances are tradable assets (unlike spot variance).
We get a family of martingales indexed by their individual time
horizons T .
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VIX squared

Consider the payoff of a forward-starting variance swap

ζT (T ) =
1

∆

∫ T+∆

T
ξT (u) du

=
1

∆

∫ T+∆

T
ET

∫ T+∆

T
vu du

=
1

∆

∫ T+∆

T
ET 〈X 〉T ,T+∆,

which, when ∆ is 30 days, is just VIX squared.

The G-expansion gives us the joint MGF of VIX 2, X and 〈X 〉
as follows.
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Triple joint MGF

Theorem 3 (Theorem 4.4 of [FGR20])

For a, b, c ∈ R sufficiently small,

Et

[
ea XT +b 〈X 〉t,T +c ζT (T )

]
= exp

{
a Xt + c ζt(T ) +

∞∑
k=2

Gk
t

}
,

where

G2 =
(

1
2a (a− 1) + b

)
(X � X )t(T ) + ac X � ζ + 1

2c
2 ζ � ζ,

Gk =
1

2

k−2∑
j=2

Gk−j �Gj + (a X �Gk−1) for k > 2.
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Proof.

This is a direct consequence of Theorem 1: The time-T quantity
of interest is

AT := a XT + b 〈X 〉t,T + c ζT (T )

and it suffices to compute (using that X + 1
2 〈X 〉 is martingale),

Et [AT ] = a Xt + (b − 1
2 a) (X � X )t(T ) + c ζt(T ) .

Theorem 3 is completely model-independent!
It is useful in particular when the diamond trees are easy to
compute or approximate.

We can get the joint MGF of any set of random variables of
interest in the same way.

For example, VIX futures are martingales. So the joint MGF of
SPX and VIX is in principle computable!
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Trees with colored leaves

Denote X ≡ and ζ ≡ .

In Theorem 3 we wrote

G2 =
(

1
2a (a− 1) + b

)
+ ac + 1

2c
2 .

We could define (X � X ) = M, or = , resulting in trees
with leaves of three different colors.

In a forward variance model, Xt represents the log-stock price

and Mt(T ), the expected total variance
∫ T

t
ξt(u) du.

Then

G2 =
(

1
2a (a− 1) + b

)
+ ac + 1

2c
2 .

In general, we can always identify subtrees in this way and
assign them a new variable name (and leaf color).
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F-recursion

Putting b = −1
2a in the G-recursion gives the F-recursion.

Theorem 4

With F2 = 1
2a (a− 1) = 1

2a (a− 1) and ∀k > 2,

F
k =

1

2

k−2∑
j=2

F
k−j �Fj + (a Y �Fk−1), (5)

and we have, for sufficiently small a,

logEt

[
eaXT

]
= a Xt +

∑
k≥2

F
k . (6)
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On the other hand, Corollary 3.1 of [AGR2020] reads:

Corollary

The cumulant generating function (CGF) is given by

ψt(T ; a) = logEt

[
ei a XT

]
= i a Xt −

1

2
a (a+ i)Mt(T ) +

∞∑
`=1

F̃`(a).

(7)

where the F̃` satisfy the recursion

F̃0 = −1
2a(a + i)Mt = −1

2a(a + i) and for k > 0,

F̃` =
1

2

`−2∑
j=0

(
F̃`−2−j � F̃j

)
+ ia

(
X � F̃`−1

)
. (8)

With the identification F̃` = F
`+2, formulae (6) and (7), and

the recursions (5) and (8) are equivalent.
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Applying the recursion (8), the first few F̃ forests are given by

F̃0 = −1
2a(a + i)

F̃1 = − i
2a

2(a + i)

F̃2 = 1
23 a

2 (a + i)2 + 1
2a

3 (a + i)

F̃3 = (F̃0 � F̃1) + ia � F̃2

= i
22 a

3 (a + i)2 + i
23 a

3 (a + i)2 + i
2a

4 (a + i) .

Note that the total probability and martingale constraints are
satisfied for each tree.

That is ψT
t (0) = ψT

t (−i) = 0.
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Variance and gamma swaps

The variance swap is given by the fair value of the log-strip:

Et [XT ] = (−i)ψT
t
′
(0) = Xt − 1

2 Mt(T )

and the gamma swap (wlog set Xt = 0) by

Et

[
XT eXT

]
= −iψT

t
′
(−i).

Remark

We can in principle compute such moments for any stochastic
volatility model written in forward variance form, whether or not
there exists a closed-form expression for the characteristic function.
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The gamma swap

It is easy to see that only trees containing a single leaf will
survive in the sum after differentiation when a = −i so that

∞∑
`=1

F̃
′
`(−i) = i

2

∞∑
`=1

X �`M

= i
2

{
+ + + ...

}
Then the fair value of a gamma swap is given by

Gt(T ) = 2Et

[
XT eXT

]
= + + + + ... (9)

Remark

Equation (9) allows for explicit computation of the gamma swap
for any model written in forward variance form.
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The leverage swap

We deduce that the fair value of a leverage swap is given by

Lt(T ) = Gt(T )−Mt(T ) =
∞∑
`=1

X �`M

= + + + ... (10)

The leverage swap is expressed explicitly in terms of
covariance products of the spot and vol. processes.

If spot and vol. processes are uncorrelated, the fair value of
the leverage swap is zero.

An explicit model-free expression for the leverage swap!
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Lt(T ) directly from the smile

Let

d±(k) =
−k

σBS(k,T )
√
T
± σBS(k,T )

√
T

2

and following Fukasawa [Fuk12], denote the inverse functions
by g±(z) = d−1

± (z). Further define

σ±(z) = σBS(g±(z),T )
√
T .

It is a well-known corollary of Matytsin’s characteristic
function representation in [Mat00], that

Mt(T ) =

∫
R
dz N ′(z)σ2

−(z).

The gamma swap is given by

Gt(T ) =

∫
R
dz N ′(z)σ2

+(z).
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Fast calibration

For each T , Lt(T ) = Gt(T )−Mt(T ) may be estimated from
the observed smile.

In the case of SPX, there are currently between 30 and 40
listed expirations.

Also, Lt(T ) =
∑∞

`=1 X �`M.

For models (such as affine forward variance models) where
diamond trees are easily computable, fast calibration is then
possible.
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The Bergomi-Guyon smile expansion

The Bergomi-Guyon (BG) smile expansion (Equation (14) of
[BG12]) reads

σBS(k ,T ) = σ̂T + ST k + CT k2 +O(ε3)

where the coefficients σ̂T , ST and CT are complicated
combinations of trees such as .

The beauty of the BG expansion is that in some sense, it
yields direct relationships between the smile and
autocovariance functionals.
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A formal expansion

Regarding the forest expansion (7) as a formal power series in ε
whose power counts the forest index `, the characteristic function
of the log stock price may be written in the form

ϕt(T ; a) = exp

{
i a Xt −

1

2
a (a + i)Mt(T ) +

∞∑
`=1

ε` F̃`(a)

}
.

On the other hand, from for example equation (5.7) of [Gat06],
with Xt = 0,∫ ∞

0

du

u2 + 1
4

Re
[
e−iuk

(
ϕT
t (u − i/2)− e−

1
2 (u2+ 1

4 ) Σ(k)
)]

= 0

(11)
where Σ(k) = σ2

BS(k,T )T is the implied total variance smile,
k = logK/S is the log-strike, and T is time to expiration.
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Let

Σ(k) =
∞∑
`=0

ε` a`(k).

Equation (11) may then be rewritten in the form

∫ ∞
0

du

u2 + 1
4

Re

[
e−iuk exp

{
−1

2

(
u2 +

1

4

) ∞∑
`=0

ε` a`(k)

}]

=

∫ ∞
0

du

u2 + 1
4

Re

[
e−iuk e−

1
2 (u2+1/4) Mt(T ) exp

{ ∞∑
`=1

ε` F̃`(u − i/2)

}]
.

(12)
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Matching powers of ε on each side of (12) gives the coefficients
a`(k) in terms of diamond trees, for any ` ∈ Z+.

a0(k) = Mt(T ) =

a1(k) =

(
k

M
+

1

2

)
a2(k) =

1

4
( )2

{
−5k2

M3
− 2k

M2
+

3

M2
+

1

4M

}
+

1

4
( )

{
k2

M2
− 1

M
− 1

4

}
+( )

{
k2

M2
+

k

M
− 1

M
+

1

4

}
.

It is straightforward to verify that the resulting expansion coincides
with that of Bergomi and Guyon up to second order in ε.
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Bergomi-Guyon to higher order

This algorithm can be extended to any desired order. For example,

a3(k) = I0,3 +
(

+ 1
2

)
I1,1

+ 1
2

[
I2,1 − 2 I2

1,0 I0,1

]
+ [I1,3 − I1,0 I0,1 I0,2]

+ 1
6 ( )3 [I2,3 − I2,0 I3

0,1 − 3 I1,0 I0,1

(
I1,2 − I1,0 I2

0,1

)]
.

(13)

The Ii ,j are Hermite-like polynomials in k .
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We may compute the coefficients in (13) explicitly as follows.

I0,3 =
k3

M3
+

3k2

2M2
− 3k

M2
+

3k

4M
− 3

2M
+

1

8

I1,1 =
k3

2M3
+

k2

4M2
− 3k

2M2
− k

8M
− 1

4M
− 1

16

I2,1 − I2
1,0 I0,1 = −2k3

M4
− k2

2M3
+

k

4M2
+

7k

2M3
+

1

4M2

I1,3 − I1,0 I0,1 I0,2 = −4k3

M4
− 7k2

2M3
− k

2M2
+

7k

M3
+

2

M2
+

1

8M
I2,3 − I2,0 I3

0,1 − 3 I1,0 I0,1

(
I1,2 − I1,0 I2

0,1

)
=

39k3

2M5
+

45k2

4M4
+

3k

8M3
− 24k

M4
− 3

16M2
− 9

2M3
.
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Third order skew

The ATM total variance skew is given by

Σ′(0) =
3∑

`=0

ε
` a′`(0) +O(ε4)

=
ε

M
+
ε2

M
−

ε2

2 M2
( )2

+ε3
(

3

4M
−

3

M2

)
+ ε

3
(
−

3

2M2
−

1

8M

) (
+ 1

2

)

+ε3 1
2

[
1

4M2
+

7

2M3

]
+ ε

3
[
−

1

2M2
+

7

M3

]
+ε3

( )3
[

1

16M3
−

4

M4

]
+O(ε4).

Compare with the approximation

Σ′(0) ≈ 1

M

{
+ + + ...

}
in [Fuk14].
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Affine forward variance models

Following [GKR19] consider affine forward variance models of the
form

dSt
St

=
√
vt dZt

dξt(u) = κ(u − t)
√
vt dWt ,

with d〈W ,Z 〉t = ρ dt.

This class of models includes classical and rough Heston.

As we will see, diamond trees are particularly easy to compute
in AFV models.
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Affine trees

Lemma 5 (Lemma 4.5 of [FGR20] )

In an affine forward variance model, all diamond trees take the form∫ T

t
ξt(u) h(T − u) du

for some function h.
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Classical Heston

Example (Classical Heston)

In this case,
dξt(u) = ν e−λ (u−t)√vt dWt .

Then, for example,

= (X �M)t(T ) =
ρ ν

λ

∫ T

t
ξt(u)

[
1− e−λ(T−u)

]
du.
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Rough Heston

Example (Rough Heston)

In this case, with α = H + 1/2 ∈ (1/2, 1) (and with λ = 0),

dξt(u) =
ν

Γ(α)
(u − t)α−1√vt dWt .

Then, for example,

= Mt(T ) = (X � X )t(T ) =

∫ T

t
ξt(u) du,

=
ν2

Γ(α)2

∫ T

t
ξt(u) du

(∫ T

u
(s − u)α−1 ds

)2

=
ν2

Γ(1 + α)2

∫ T

t
ξt(u) (T − u)2α du.
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For a bounded forward variance curve ξ one then sees that
diamond trees with k leaves are of order (T − t)1+(k−2)α.

In this case, the F-expansion (forest reordering according to
number of leaves) has the interpretation of a short-time
expansion, the concrete powers of which depend on the
roughness parameter α = H + 1/2 ∈ (1/2, 1), cf.
[CGP21, GR19].
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The triple joint MGF in affine forward variance models

Lemma 5 combined with Theorem 3 characterize the
triple-joint MGF of XT , 〈X 〉T and ζT (T ) for an affine forward
variance model.

Compare with Theorem 4.3 of [AJLP2019] and Proposition 4.6
of [GKR19].

We obtain the convolutional form

Et

[
ea XT +b 〈X 〉t,T +c ζT (T )

]
= exp {a Xt + (ξ ? g)(τ ; a, b, c)t(T )} .

This is consistent with (and generalizes) Theorem 2.6 of
[GKR19] where the same convolution Riccati equation
appears, but with g = g(τ ; a) instead of (τ ; a, b, c) and
different boundary conditions.
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Computation of trees under rough Heston

Abbreviating bounded variation terms as ‘BV’, we have

dXt =
√
vt dZt + BV

dMt =

∫ T

t
dξt(u) du + BV

=
ν

Γ(α)

√
vt

(∫ T

t

du

(u − t)γ

)
dWt + BV

=
ν (T − t)α

Γ(1 + α)

√
vt dWt + BV .
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The first order forest

There is only one tree in the forest F̃1.

F̃1 = = (X �M)t(T ) = Et

[∫ T

t
d〈X ,M〉s

]
=

ρ ν

Γ(1 + α)
Et

[∫ T

t
vs (T − s)α ds

]
=

ρ ν

Γ(1 + α)

∫ T

t
ξt(s) (T − s)α ds.
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Higher order forests

Define for j ≥ 0

I
(j)
t (T ) :=

∫ T

t
ds ξt(s) (T − s)j α.

Then

dI
(j)
s (T ) =

∫ T

s
du dξs(u) (T − u)j α + BV

=
ν
√
vs

Γ(α)
dWs

∫ T

s

(T − u)j α

(u − s)γ
du + BV

=
Γ(1 + j α)

Γ(1 + (j + 1)α)
ν
√
vs (T − s)(j+1)α dWs + BV.

With this notation,

=
ρ ν

Γ(1 + α)
I

(1)
t (T ).
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The second order forest

There are two trees in F̃2:

= Et

[∫ T

t
d〈M,M〉s

]
=

ν2

Γ(1 + α)2

∫ T

t
ξt(s) (T − s)2α ds

=
ν2

Γ(1 + α)2
I

(2)
t (T )

and

=
ρ ν

Γ(1 + α)
Et

[∫ T

t
d〈X , I (1)〉s

]
=

ρ2 ν2

Γ(1 + 2α)
I

(2)
t (T ).
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The third order forest

Continuing to the forest F̃3, we have the following.

=
ρ ν3

Γ(1 + α) Γ(1 + 2α)
I

(3)
t (T )

=
ρ3 ν3

Γ(1 + 3α)
I

(3)
t (T )

=
ρ ν3 Γ(1 + 2α)

Γ(1 + α)2 Γ(1 + 3α)
I

(3)
t (T ).

In particular, we readily identify the pattern(
X �`M

)
t

(T ) =
(ρ ν)`

Γ(1 + ` α)
I

(`)
t (T ).
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The leverage swap under rough Heston

Using (10), we have

Lt(T ) =
∞∑
`=1

(
X �`M

)
t

(T )

=
∞∑
`=1

(ρ ν)`

Γ(1 + ` α)

∫ T

t
du ξt(u) (T − u)` α

=

∫ T

t
du ξt(u) {Eα(ρ ν (T − u)α)− 1}

where Eα(·) denotes the Mittag-Leffler function.

An explicit expression for the leverage swap!

Since we can impute the leverage swap Lt(t) from the smile
for each expiration T , fast calibration of the rough Heston
model is possible.
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Summary

We introduced the diamond product.

We defined the G-expansion and gave an idea of its proof.

The cumulant expansion of [LRV19] and the Exponentiation
Theorem of [AGR2020] are special cases.

We showed how easy computations can be in affine forward
variance models.

Quick calibration of such models is one application.
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