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Forward variance models

Let S be a strictly positive continuous martingale.

Then X := log S is a semimartingale with quadratic variation
process 〈X 〉.
Following [BG12], it is natural to specify a model in forward
variance form.

vt dt := d〈X 〉t
ξt(T ) = E [vT | Ft ] .

Forward variances are tradable assets (unlike spot variance).
We get a family of martingales indexed by their individual time
horizons T .

As noted in [BG12], all conventional finite-dimensional
Markovian stochastic volatility models may be cast as forward
variance models.
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Example: The classical Heston model

The classical Heston stochastic volatility model may be written as

dSt
St

=
√
vt dZt

dvt = −λ (vt − v̄) dt + η
√
vt dWt

with E [dZt dWt ] = ρ dt and where λ is the speed of reversion of
vt to its long term mean v̄ .
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Forward variance in the Heston model

With ξt(u) = E [vu| Ft ], take expectations of the SDE for vt to get

dξt(u) = −λ (ξt(u)− v̄) du.

This ODE has the solution

ξt(u) = (ξt(t)− v̄) e−λ (u−t) + v̄ = (vt − v̄) e−λ (u−t) + v̄ .
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The Heston model in forward variance form

For each fixed u, ξt(u) is a conditional expectation and so a
martingale in t. It is then immediate from the last equation that

Classical Heston

dξt(u) = η e−λ (u−t)√vt dWt

It is easy to check explicitly that all drift (i.e. dt) terms
cancel.
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Affine CGF

Let Xt = log St . According to Definition 2.2 of [GKR19], a forward
variance model has an affine cumulant generating function
determined by g(t; u), if its conditional cumulant generating
function is of the form

logE
[
eu(XT−Xt)

∣∣∣Ft

]
=

∫ T

t
ξt(s) g(T − s; u) ds. (1)
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When is a forward variance model affine?

Theorem 2.4 of [GKR19] states that a forward variance model has
an affine CGF if and only if it takes the form

dSt
St

=
√
vt dZt

dξt(u) = κ(u − t)
√
vt dWt

for some deterministic, non-negative decreasing kernel κ, which
satisfies

∫ T
0 κ(r)dr <∞ for all T > 0.

Essentially, the only affine stochastic volatility model is the
Heston model, up to a choice of kernel.
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Another example: Rough Heston

With α = H + 1/2 ∈ (1/2, 1), the rough Heston model of [ER19]
reads

vu = θt(u)− 1

Γ(α)

∫ u

t
(u−s)α−1λ vs ds+

1

Γ(α)

∫ u

t
(u−s)α−1ν

√
vs dWs .

In the special case λ = 0, this model takes the forward variance
form (again by inspection):

Rough Heston
,

dξt(u) =
ν

Γ(α)
(u − t)α−1√vt dWt .
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Solving for g(·)

g(·; u) in the definition (1) of the CGF is the unique global
continuous solution of the convolution Riccati equation

g(τ ; u) = RV

(
u,

∫ τ

0
κ(τ − s)g(s; u)ds

)
= RV

(
u, (κ ? g)(τ ; u)

)
(2)

where

RV (u,w) =
1

2
(u2 − u) + ρ u w +

1

2
w2.
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An aside: Fractional calculus

Define the fractional integral and differential operators:

Iαf (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s) ds; Dαf (t) =

d

dt
I 1−αf (t).

The fractional integral is a natural generalization of the ordinary
integral using the Cauchy formula for repeated integration:

I nf (t) :=

∫ t

0
dt1

∫ t1

0
...dtn−1

∫ tn−1

0
f (tn) dtn

=
1

(n − 1)!

∫ t

0
(t − s)n−1 f (s) ds.
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Convolution Riccati equation as a fractional ODE

When the kernel is of the form κ(τ) ∼ τα−1, the convolution
Riccati equation may be rewritten as a fractional ODE.

For example, in the case of the rough Heston model (with
λ = 0), with α = H + 1

2 ,

ν h(τ ; u) := (κ ? g)(τ ; u)

=
η

Γ(α)

∫ τ

0
(τ − s)α−1 g(s; u) ds

= ν Iαg(τ ; u).

Inverting this gives g(τ ; u) = Dαh(τ ; u).
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Convolution Riccati equation as a fractional ODE

The convolution integral Riccati equation then reads

Dαh(τ ; u) =
1

2
u (u − 1) + ρ ν u h(τ ; u) +

1

2
ν2 h(τ ; u)2, (3)

consistent with [ER19].
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Computing option prices from the characteristic function

It is quite straightforward to get option prices by inverting the
characteristic function of a given stochastic process (if it is
known in closed-form).

For example, formula (5.6) of [Gat06] is a special case of
formula (2.10) of [Lew00]:

Lemma 1 (Formula (2.10) of Lewis)

C (S ,K , t,T ) = S −
√
SK

1

π

∫ ∞
0

du

u2 + 1
4

Re
[
e−iukϕt (T ; u − i/2)

]
with k = log

(
K
S

)
.

An analogous formula holds for puts.
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Alternative methods

Alternative methods include:

The COS method of [FO09]

The SINC method of [BBRR21].

Both of these methods, in particular the SINC method, are
significantly faster and more accurate than the Lewis formula
when calculating the prices of many options with the same
expiration.

i.e. when computing smiles.
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Summary so far

Given the characteristic function, it is straightforward to price
European options.

In AFV models, the characteristic function is given by

Et

[
e iaXT

]
=: ϕt(T ; a) = exp

{∫ T

t
ξt(s) g(T − s; ia) ds

}
where g(·; u) is the unique global continuous solution of the
convolution Riccati equation (2):

g(τ ; u) = RV

(
u, (κ ? g)(τ, u)

)
,

and RV (u,w) = 1
2 (u2 − u) + ρ u w + 1

2 w
2.

All we therefore need to do is to solve (2).
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The fractional Adams scheme

The fractional Adams scheme of [DFF04] is for the numerical
approximation of the solution of equations of the form

h(τ) =
1

Γ(α)

∫ τ

0
(τ − s)α−1F (h(s)) ds. (4)

The rough Heston convolution Riccati equation is of this type.
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The idea is as follows. Write g(t) = F (h(t)). With a regular grid
∆ = τ/n, 0 = t0 < t1 < . . . ≤ tn = τ , we approximate

h(tk+1) =
1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1g(s) ds

by
1

Γ(α)

∫ t

0
(t − s)α−1ĝ(s) ds,

where ĝ is the linear interpolation of g :

ĝ(t) =
tj+1 − t

tj+1 − tj
ĝ(tj)+

t − tj
tj+1 − tj

ĝ(tj+1), t ∈ [tj , tj+1], 0 ≤ j ≤ k .
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This leads to the following scheme:

ĥ(tk+1) =
∑

0≤j≤k
aj ,k+1F (ĥ(tj)) + ak+1,k+1F

(
ĥ(tk+1)

)
, (5)

with

a0,k+1 =
∆α

Γ(α + 2)
[kα+1 − (k − α)(k + 1)α]

aj,k+1 =
∆α

Γ(α + 2)
[(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1];

1 ≤ j ≤ k

ak+1,k+1 =
(∆t)α

Γ(α + 2)
. (6)
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ĥ(tk+1) is on both sides of (5) so this scheme is implicit.

Thus, we first compute a predictor of ĥP(tk+1) of ĥ(tk+1) and
plug that predictor back into (5).

We construct the predictor ĥP(tk+1) by freezing ĝ at the
beginning of each interval:

ĥP(tk+1) =
1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1g̃(s)ds,

with
g̃(t) = ĝ(tj); t ∈ [tj , tj+1), 0 ≤ j ≤ k.
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Therefore,
ĥP(tk+1) =

∑
0≤j≤k

bj ,k+1F
(
ĥ(tj)

)
,

where

bj ,k+1 =
∆α

Γ(α + 1)
[(k − j + 1)α − (k − j)α] , 0 ≤ j ≤ k .

Thus, the final explicit numerical scheme is given by

ĥ(tk+1) =
∑

0≤j≤k
aj ,k+1F (ĥ(tj)) + ak+1,k+1F

(
ĥP(tj)

)
,

where the weights aj ,k+1 are defined in (6).
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Rational approximation of the Heston solution

The Adams scheme presented above for solving the rough
Heston fractional differential equation is slow!

In [GR19], we showed how to approximate the solution of the
rough Heston fractional Riccati equation by a rational
function.

This approximation solution is just as fast as the classical
Heston solution and appears to be more accurate than the
Adams scheme for any reasonable number of time steps!
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Rational approximation to the rough Heston solution

Wlog, set ν = 1 and x = t. Then the rough Heston fractional
Riccati ODE (3) reads

Dαh(x ; a) = −1

2
a(a + i) + i ρ a h(x ; a) +

1

2
h(x ; a)2

=
1

2
(h(x ; a)− r−) (h(x ; a)− r+)

with

A =
√
a (a + i)− ρ2 a2; r± = {−i ρ a± A} .

The idea is to paste together short- and long-time expansions of
the solution using a rational (Padé) approximation.
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Short-time expansion

From (for example) the exponentiation theorem of [AGR2020],
h(x ; a) can be written as

h(x ; a) =
∞∑
j=0

Γ(1 + j α)

Γ(1 + (j + 1)α)
βj(a) x (j+1)α

with

β0(a) = −1

2
a(a + i)

βk(a) =
1

2

k−2∑
i,j=0

1{i+j=k−2} βi (a)βj(a)
Γ(1 + i α)

Γ(1 + (i + 1)α)

Γ(1 + j α)

Γ(1 + (j + 1)α)

+i ρ a
Γ(1 + (k − 1)α)

Γ(1 + k α)
βk−1(a).
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Solving the rough Heston Riccati equation for long times

In analogy with the classical Heston solution, we expect that
for a suitable range of a,

lim
x→∞

h(x ; a) = r−.

In that case, for large x , we could linearize the fractional
Riccati equation as follows.

Dαh(x ; a) =
1

2
(h(x ; a)− r−) (h(x ; a)− r+)

≈ −1

2
(r+ − r−) (h(x ; a)− r−)

= −A (h(x ; a)− r−) .
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continued...

The above linear fractional differential equation has the exact
solution

h∞(a, x) = r− [1− Eα(−Axα)] ,

where Eα(·) is the Mittag-Leffler function.

As x →∞,

Eα(−Axα) = − 1

A

x−α

Γ(1− α)
+O

(
|Axα|−2

)
.

Thus, as x →∞,

h∞(a, x)− r− =
r−
A

x−α

Γ(1− α)
+O

(
|Axα|−2

)
.
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Large x expansion

The form of the asymptotic solution motivates the following
expansion of h for large x :

h(x ; a) = r−

∞∑
k=0

γk
x−kα

Ak Γ(1− kα)
.

The coefficients γk satisfy the recursion

γ1 = −γ0 = −1

γk = −γk−1 +
r−
2A

∞∑
i ,j=1

1{i+j=k} γi γj
Γ(1− kα)

Γ(1− iα) Γ(1− jα)
.
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Rational approximation

Now we have small- and large-x expansions we can compute
global rational approximations to h(x ; a) of the form

h(m,n)(x ; a) =

∑m
i=1 pmy

m∑n
j=0 qnyn

with y = xα that match these expansions up to order m and n
respectively.

Only the diagonal approximants h(n,n) are admissible
approximations of h.
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h(3,3) is the best

From various numerical experiments, the particular
approximation h(3,3) seems to be amazingly close to the true
solution for reasonable choices of model parameters.

Though the excellent quality of the global approximation
h(3,3) might at first seem very surprising, it is consistent with
many Padé approximation stories from the literature.

In our case, h(3,3) is clearly better than either h(2,2) or h(4,4).

h(5,5) is another very good approximation, but still not as good
as h(3,3). h(5,5) is obviously also slower to compute.
Higher order approximations may turn out to beat h(3,3).
However, h(3,3) may still be best in practice if speed of
computation is taken into account.
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Computing h(3,3)

We have the series expansion of h for small y :

hs(y) = b1 y + b2 y
2 + b3 y

3 +O(y4).

We have the series expansion of h for large y :

h`(y) = g0 +
g1

y
+

g2

y2
+O

(
1

y3

)
.

Matching the coefficients of the rational approximation

h(3,3)(y) =
p1 y + p2 y

2 + p3 y
3

1 + q1 y + q2 y2 + q3 y3

to hs(y) and h`(y) respectively gives a linear system of six
equations for the six unknowns {pi , qi}.
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Model parameters

Recall that in our formulation of the rough Heston model,

κ(τ) =
ν

Γ(α)
τα−1,

with α = H + 1/2.

We choose model parameters roughly consistent with those
found from calibration to SPX options on May 19, 2017 in
[EGR19]:

ξ(u) = 0.025; H = 0.05; ν = 0.4; ρ = −0.65. (7)
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Adams and Padé smiles compared

Figure 1: The red curve is the Adams smile with 5,000 steps. h(3,3) is
uncannily good.
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Padé vs Adams smile errors

Figure 2: The red curve is the Adams smile with 5,000 steps. Again,
h(3,3) errors are uncannily small.
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Simulation

We now turn our attention to simulation of AFV models as
prescribed in [Gat21].

Inspired by [BLP17] and [And08] we propose two algorithms
to simulate AFV models.

Now that we have two alternative methods of computing the
volatility smile under rough Heston, we can easily check
convergence of these algorithms.
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Discretization of the spot and variance processes

From the AFV dynamics,

dξt(u) = κ(u − t)
√
vt dWt ,

it follows that

vT = ξT (T ) = ξ0(T ) +

∫ T

0
dξs(T )

= ξ0(T ) +

∫ T

0
κ(T − s)

√
vs dWs . (8)
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Wlog, let t = 0 and ξ(u) = ξ0(u). Let the time step
∆ = T/N where N is the number of steps.

As in [BLP17], we have the following exact decomposition of
(8):

vn∆ = ξ(n∆) +
n∑

k=1

∫ k∆

(k−1)∆
κ(n∆− s)

√
vs dWs .
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Discretization of the v -process

With simpler notation,

vn = ξn +
n∑

k=1

∫ k∆

(k−1)∆
κ(n∆− s)

√
vs dWs =: ξ̂n + un, (9)

where the Fn−1-adapted variable ξ̂n is given by

ξ̂n = E [vn| Fn−1] = ξn +
n−1∑
k=1

∫ k∆

(k−1)∆
κ(n∆− s)

√
vs dWs ,

(10)
and the martingale increment un by

un =

∫ n∆

(n−1)∆
κ(n∆− s)

√
vs dWs . (11)
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The X -process

We also need to simulate the nth increment of the component
of the log-stock price process X = log S parallel to the
volatility process1,

χn =

∫ n∆

(n−1)∆

√
vs dWs . (12)

We then have the following discretization of the X process:

Xn = Xn−1 − 1
4 (vn + vn−1) ∆ +

√
1− ρ2

√
v̄n ∆Z⊥n + ρχn,

where Z⊥n is standard normal, independent of χn and un.

1We write the increments as χn to emphasize that they should be
approximately χ2 distributed random variables.
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Choice of kernel

In our computations we will focus on the power-law kernel:

κ(τ) =
√

2H η τα−1 =: η̃ τα−1. (13)

We also need

Definition

For i , j ≥ 0,

Ki (∆) =

∫ ∆

0
κ(s + i∆) ds;

Ki ,j(∆) =

∫ ∆

0
κ(s + i∆)κ(s + j∆) ds.

The Ki ,j(∆) with i 6= j are not in general computable in
closed-form but are easy to compute numerically.
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Covariances and correlations

It can be shown that

var[un|Fn−1] = v̄nK0,0(∆) +O
(

∆1+2H
)
, (14)

where

v̄n :=
1

2H + 1

[
ξ̂n + 2H vn−1

]
.

Similarly
var[ξ̃n+1|Fn−1] ≈ v̄nK1,1(∆)

var[χn|Fn−1] ≈ v̄n ∆

cov[un, ξ̃n+1|Fn−1] ≈ v̄nK0,1(∆)

cov[un, χn|Fn−1] ≈ v̄nK0(∆)

cov[χn, ξ̃n+1|Fn−1] ≈ v̄nK1(∆). (15)

Given a suitable kernel, all of these may be easily computed.
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The correlation matrix

Because variances and covariances in an AFV model are linear
in ξ, the correlation matrix takes the simple form.

R =

 1 ρuχ ρuξ
ρuχ 1 ρξχ
ρuξ ρξχ 1

 . (16)

where

ρuχ =
K0(∆)√

∆
√
K0,0(∆)

ρuξ =
K0,1(∆)√

K0,0(∆)
√
K1,1(∆)

ρξχ =
K1(∆)√

∆
√
K1,1(∆)

are all independent of n.
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The power-law kernel

In the case of the power-law kernel κ(τ) = η̃ τα−1, these
correlations are functions of H only.

Specifically

ρuχ =

√
2H

H + 1/2
,

and the other correlations may be easily computed
numerically.

In Figure 3, we plot these correlations as a function of H.
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Plot of the correlation matrix in the power-law kernel case

Figure 3: The correlations ρuχ, ρuξ, and ρξχ vs. H in the power-law
kernel case.
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A further approximation

By assumption, the kernel behaves as a power-law kernel for
∆ sufficiently small.

Figure 3 thus suggests the following approximation whose
motivation is easy to see by thinking of Ki (∆) as ∆ times the
average value of κ(s + i∆) over the interval (0,∆].

Approximate covariance

For i ≥ 0 and j ≥ 1,

Ki ,j(∆) ∆ ≈ Ki (∆)Kj(∆). (17)
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An approximate correlation matrix

With the approximation (17),

K0,1(∆) ≈ 1

∆
K1(∆)K0(∆); K1,1(∆) ≈ 1

∆
K1(∆)2.

Substituting these expressions into (15) gives the correlation matrix

R̄ =

 1 ρ̄ ρ̄
ρ̄ 1 1
ρ̄ 1 1

 , (18)

where

ρ̄ ≈ K0(∆)√
K0,0(∆) ∆

= ρu χ.
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Consequences for simulation

At each step, we need to generate (at least) three random
variables: un, χn, and ξ̂n+1.

un =

∫ n∆

(n−1)∆
κ(n∆− s)

√
vs dWs

χn =

∫ n∆

(n−1)∆

√
vs dWs

ξ̂n+1 = ξn+1 +
n∑

k=1

∫ k∆

(k−1)∆
κ((n + 1)∆− s)

√
vs dWs .

When the model is Markovian (H = 1/2), we need only
generate un at the nth time step; χn and ξ̂n+1 are perfectly
correlated with un.

In practice, in the non-Markovian case (H < 1/2), we need
only generate one other random variable consistent with the
correlation matrix R̄.
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Average values of the kernel

Echoing the notation of [BLP17], let

b?j
2 =

1

∆
Kj−1,j−1(∆). (19)

b?j
2 thus gives the RMS average of the kernel at the jth lag.
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The evolution of the forward variance curve

The approximation∫ k∆

(k−1)∆
κ((n + 1)∆− s)

√
vs dWs ≈ b?n+1−k χk

gives

ξ̂n+1 ≈ ξn+1 +
n∑

k=1

b?n+1−k χk .

Similarly (though not needed for the algorithm), for m > n,

E [vm| Fn] ≈ ξm +
n∑

k=1

b?m−k χk .

We see that the entire forward variance curve evolves
according to the weighted historical path of the X = log S
process.
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The Andersen Quadratic Exponential (QE) scheme

Näıve simulation of the v process leads to negative values

Andersen’s Quadratic Exponential (QE) scheme [And08]
guarantees v positive

Conditional means and variances are matched at each step

We simulate according to the value of the ratio

ψn :=
var[vn|Fn−1]

ξ̂2
n

=
var[un|Fn−1]

ξ̂2
n

. (20)
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The Andersen Quadratic Exponential (QE) scheme

If ψn ≤ 2, simulate vn as

vn = αn (βn + Zn)2

with Zn ∼ N(0, 1) and

β2
n =

2

ψn
− 1 +

√
2

ψn

√
2

ψn
− 1; αn =

ξ̂n
1 + β2

n

.

On the other hand, if ψn ≥ 1, simulate vn as

vn = −1{Un<pn} γn log
Un

pn

with Un ∼ U(0, 1) and

pn =
2

1 + ψn
; γn =

1

2
ξ̂n (1 + ψn) .
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Conditional means and variances

It is straightforward to check that means and variances are
correctly matched in both cases.

Since the two regions of applicability overlap, Andersen
suggests to use algorithm ψ− if ψn < 3/2 and algorithm ψ+ if
ψn ≥ 3/2.
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A Riemann-sum QE scheme

Inspired by the Riemann-sum scheme of [BLP17] and the

rough-Donsker scheme of [HJM17], we simulate the un, ξ̂n+1

and χn as if all three were perfectly correlated, equivalent to
setting ρ̄ = 1 in (18).

From Figure 3 such an approximation may be justified if H is
not too much less than 1

2 .
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The RSQE scheme

The RSQE scheme

1 Given χk , for k < n, with ε very small, compute

ξ̂n = max
[
ε, ξn +

∑n−1
k=1 b?n−k+1 χk

]
.

2 With var[vn|Fn−1] = b?1
2 v̄n ∆, simulate vn using the QE

scheme.

3 un = vn − ξ̂n.

4 χn = un
b?1

.

5 Finally,
Xn = Xn−1 − 1

4 (vn + vn−1) ∆ +
√

1− ρ2
√
v̄n ∆Z⊥n + ρχn.
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A hybrid QE scheme

The RSQE scheme matches unconditional means and
variances at each step but it does not match the covariance
structure of the process.

For example, consider the conditional covariance between un
and χn which is given by

cov[un, χn|Fn−1] =

∫ n∆

(n−1)∆
κ(n∆− s)E [vs |Fn−1] ds ≈ v̄nK0(∆).

The RSQE scheme sets un = b?1 χn so that

cov[un, χn|Fn−1] ≈ b?1 var[χn|Fn−1] = v̄n

√
K0,0(∆) ∆,

which is equivalent to the approximation

K0(∆) ≈
√
K0,0(∆) ∆. (21)
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Approximation (21), though accurate for small ∆ when the
kernel κ has no singularity at zero, is obviously very inaccurate
when H is small.

The essence of the hybrid scheme with κ = 1 of [BLP17] is to
correct the error in the approximation (21) by simulating
another random variable, uncorrelated with un, so as to match
the covariance of un and χn.

For this, we need a bivariate version of Andersen’s QE scheme.
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A bivariate version of Andersen’s QE scheme

As before, let

un =

∫ n∆

(n−1)∆
κ(n∆− s)

√
vs dWs ; χn =

∫ n∆

(n−1)∆

√
vs dWs .

Linear regression gives

un ≈ βuχ χn + εn,

where βuχ = K0(∆)/∆, and εn and χn are uncorrelated.

Since vn = ξ̂n + un ≥ 0, we must ensure that
βuχ χn + εn + ξ̂n ≥ 0.

A scheme to achieve this is given in the following lemma.
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A bivariate QE scheme

Lemma 2

Let χn and εn be generated independently using the QE scheme
with the following conditional means and variances:

E [βuχ χn|Fn−1] = 1
2 ξ̂n; E [εn|Fn−1] = 1

2 ξ̂n;

var[χn|Fn−1] = v̄n ∆; var[εn|Fn−1] = v̄n
(
K0,0(∆)− 1

∆K0(∆)2
)
.

Then vn = βuχ χn + εn + ξ̂n ≥ 0. Moreover, with
un = βuχ χn + εn,

var[un|Fn−1] = v̄nK0,0(∆); cov[un, χn|Fn−1] = v̄nK0(∆).
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The hybrid QE (HQE) scheme

The HQE scheme

1 Given χk , for k < n, with ε very small, compute

ξ̂n = max
[
ε, ξn +

∑n−1
k=1 b?n−k+1 χk

]
.

2 Simulate χn and εn using the bivariate QE scheme

3 vn = ξ̂n + 1
∆K0(∆)χn + εn.

4 Finally,
Xn = Xn−1 − 1

4 (vn + vn−1) ∆ +
√

1− ρ2
√
v̄n ∆Z⊥n + ρχn.
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Rough Heston parameters

Consider the power-law kernel κ(τ) =
√

2H η τα−1 with
parameters roughly consistent with those found from
calibration to SPX options on May 19, 2017 in [EGR19]:

ξ(u) = 0.025; H = 0.05; η = 0.8; ρ = −0.65. (22)

Note that the rough Heston kernel in [EGR19] takes the form

κ(τ) =
τα−1

Γ(α)
,

so ν in in [EGR19] and η in (13) are related as

ν = η
√

2H Γ(α).

η = 0.8 corresponds to ν ≈ 0.4089.
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Richardson extrapolation

It seems that the order of weak convergence of the fractional
Adams scheme is one.

It therefore makes sense to use Richardson extrapolation to
increase the order of convergence.

Definition 3 (Richardson extrapolation)

Let Sn denote an n-step approximation of the volatility smile
according to some numerical scheme. Then the n-step Richardson
extrapolation is given by

SRn = S2n − Sn.

Adopting the 2, 500-step Richardson extrapolated Adams
smile SR2500 as our reference smile, we plot errors in the 200
step Adams and Padé approximated smiles in Figure 4.
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Plots of smile and errors

Figure 4: The 1-year rough Heston smile with parameters (22). The pink
curve is the reference Adams smile SR

2500. The blue and brown curves are
from the Adams scheme with 200 steps and the Padé approximation
respectively. The dashed horizontal lines indicate our target error band of
±0.10%.
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Convergence of the RSQE and HQE schemes

Figure 5: The 1-year rough Heston smile with parameters (22). The pink
reference curve is the Adams reference smile SR2500. The green-dotted and
blue-dashed curves are from RSQE and HQE simulations with 106 paths.
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Convergence of the HQE scheme

Figure 6: In the LH plot, the pink curve is the HQE smile SR500. The blue
dotted lines are HQE smiles Sn computed with
n ∈ {25, 50, 100, 200, 500, 1000}. In the RH plot, we plot absolute
implied volatility errors. All simulations are with 106 paths.
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Convergence of Richardson extrapolated HQE smiles

Figure 7: In the LH plot, the pink curve is the HQE smile SR500. The blue
dotted lines are the Richardson-extrapolated smiles SR

n computed with
n ∈ {25, 50, 100} . In the RH plot, we plot absolute implied volatility
errors vs time steps for log-strike k = 0.04. We see evidence of order 2
weak convergence of Richardson-extrapolated smiles.
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Summary

We now have two ways to compute European option prices in
AFV models: the Adams scheme and simulation using the
HQE scheme.

In the special case of the rough Heston model with λ = 0, we
also have the rational approximation.

For other more exotic options, we only have simulation.

The HQE scheme is as fast as the Adams scheme for a similar
level of accuracy.

Moreover, there are many ways to potentially increase the
efficiency of the HQE scheme (FFT and variance reduction for
example).
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