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This work and the exponentiation theorem

@ In earlier talks, | presented the diamond product and the
exponentiation theorem.

@ Manipulations were formal and the convergence properties of
the resulting forest expansion unclear.
e Eventually published as Elisa Alos, Jim Gatheral, and Rado3
Radoiéi¢, Exponentiation of conditional expectations under
stochastic volatility, Quantitative Finance 20(1):13-27, 2020.

@ This time | explain the remarkably simple origin of the forest
expansion, | give its convergence properties and attempt to
give a sense of its wide applicability.
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The diamond product

Definition

Given two continuous semimartingales A, B with integrable
covariation process (A, B), the diamond product? of A and B is
another continuous semimartingale given by

(Ao B)(T) :=Et[(A B)r, 7] = Et [(A, B) 7] = (A, B)t,

where (A, B): 17 = (A, B)T — (A, B):.

“Warning. Our diamond product is (very) different from the Wick product.
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Properties of the diamond product

Commutative: Ao B = BoA.
Non-associative: (Ao B)o C # Ao (B C).

A< B depends only on the respective martingale parts of A
and B.

@ Ao B is in general not a martingale.

(]
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The G-forest expansion

Theorem 1 (Theorem 1.1 of | )

Let YT be a real-valued, F1-measurable random variable with
associated martingale Y; = E; [YT]. Under natural integrability
conditions, with a, b small enough, there is a.s. convergence of

log E; [anT+b<Y>T] =aYe +b(Y):+ Y GK(T), (1)

k>2
where
1
G2 = (232 + b) (Yo Y)(T),
1 k—2 ) )
Gk — §Z@H<>GJ +@YoG Y frk>2 (2

j=2
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|dea of the proof

For a generic (continuous) semimartingale Z, sufficiently
integrable, let
AT = logE, [ezﬂ.

Then, noting that /\; =0,
E, [eZT} = E; [eZTMﬂ — eZHN

The stochastic logarithm £ (Ee(Z7)) =Z + AT + 3(Z+AT) is a
martingale. Thus,

/\;r = E; |:Zt7T + %<Z+AT>t,T}
= Et[Ze 7]+ 5((Z+AT) o (Z+AT))u(T).
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Now with! Z = eaY 4 €2 b(Y) we get
T 2 74\
N (€) = €aBe [Yerl +b(Y o Y)o(T) + § (eaY + AT () "(T).
t

Put Al (€) = €2G? + 3G3 + ..., and match coefficients of €.

[2]: G2=b(YoY)(T)+ 32% (Yo Y)(T). )
[€3]: G3 = (aY o G?)(T). J
[*]: GE=(aY 0G3)(T) + 2(G? 0 G?)¢(T). |

@ We see the recursion (2) emerge!

!Recall that terms of bounded variation such as (Y)) do not contribute to
diamond products.
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Special cases

Interesting special cases include

@ The exponential martingale: b = —%32. All corrector terms
Gk vanish.

e The G-expansion can thus be seen as a “broken exponential
martingale” expansion.

@ The FF-forest expansion of [AGR2020] (working paper 2017):
fa+b=0.

o The F-forest expansion gives a general expression for the
characteristic function of the log-stock price in a stochastic
volatility model written in forward variance form.

@ The cumulant (K-forest) expansion of Lacoin-Rhodes-Vargas
[LRV19]: b=0.

e Their expansion was derived in the context of renormalization

of the sine-Gordon model in quantum physics.



000000080

Further applications

e In [FGR20], we give a number of applications.
@ Other possible applications include

e computation of likelihood functions in statistics,
e computation of correlation functions in statistical physics,
e computation of amplitudes in quantum field theory.

@ It's very satisfying that problems in quantitative finance and
quantum physics lead to the same nice mathematics!
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Trees and forests

@ The general term G}(T) in (2) is naturally written as a linear
combination of binary diamond trees?.

@ Hence the terminology G-forest expansion for (1).

@ Specifically, writing e as a short-hand for Y, interpreted as
single leaf, we have

G* = (3@ +b)er

G = a(%az—i—b).@’

G* = %(%az+b)2w+a2(%az+b).\<’¢'

G® = a(%az—i—b)z.\({y—kéa(%f—i—b)zm
+a3(;az+b)% (3)

*Trees stolen from [Hail3]!
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The K-forest expansion

As mentioned earlier, the K-forest expansion (K for “Kumulant™)
is obtained by setting b =0 in (1). This gives

K? = %azv

K3 = %33.\0

K* = %a4w+ %34.\%

K = %35 b +%a5 3’—1—?5.\%

With K! = e, the K-recursion follows naturally.
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The K-forest expansion

Theorem 2 (Theorem 1.2 of | )

Let AT be Fr-measurable with N € N finite moments. Then the
recursion

1 n
=) (KFoK™MIR)(T), Vn>0

Ky(T) = 5
k=1

with K}(T) := E; [A7] is well-defined up to KN and, for a € R,

N
log E; [ e™47] = " (ia) " K(T) + ofJa]")

n=1

which identifies n! x K{(T) as the (time t-conditional) n.th
cumulant of At.
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Example: K3 and the third central moment

@ For higher n, the forest expansion encodes relations that are
increasingly complex to derive by hand.

@ For example, from the forest expansion we have
KA(T)=3(Yo(YoY))(T)

and also, since the third cumulant is the third central moment,

1
~ 3l

@ On the other hand, the relation

Ki(T) = 57 Be [Ve,r?].

1

F(Yo(YoY)(T)= 31

E¢ [Ye T3]

)

is not so obvious.
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Another application: MGF of the Lévy area

Theorem (P. Lévy)

Let {X,Y} be 2-dimensional standard Brownian motion, and
stochastic (“Lévy”) area be given by

t
Ay :/ (Xs dYs — Ys dX;) .
0

Then, for T € (- %, %),

1
cos T °

Eo [eAT] =

@ In particular, we will see how to compute trees in practice.



0000e000000

First term

First,

K2= 2o = (Ao A)(T)

2
= L b ) o
1 1

= §(T—t)2+§(Xt2+Yt2)(T—t).

In particular,
dK2 = (Xs dXs + Ys dYs)(T —s) + BV,

where BV denotes a bounded variation term.

@ Note that BV terms do not contribute to diamond trees.
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Second term

Similarly, recalling that dKi = XsdYs — Ys dXs,

K3 = KloKk2="X»

= E; [/tTd<K1,K2>S]

.
= B [/t [XY d(Y)s — YX d(X)s] (T —s)| =0.

@ It is easy to check that all odd forests vanish.
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K4

K = lgeoxz— 1Y
2 2
1

= g [/ " X0+ Y2d(y).] (T - 5)2}

_ ;/:(Et [(X2] + B¢ [Y2]) (T - 5)ds
T 1 T
= [T sPa 0 aY) [ (T-9Res

S 0 T NI IRV S

12 2 3

@ It is now clear how to extend this computation to all orders.
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The general pattern

We see that for each even n, K(T) = a, lt(")(T) for some a, € Q

where
;
(1) = ;/t (E: [X2] +E: [Y2]) (T —s)"2ds
o (T=0)" 1 1 e
= (n_1)+§(xtz+yt2)ﬁ(7_—t) !
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More terms

o Note from above that K2 = /() and K* = /(4.
@ Applying the lemma

\ N

K = () = 1(6)

(T —1)°
=+

: 1

(x2 YA LT

oo\l\)oo

5

@ In principle, we could go on for ever, computing forests (or
cumulants) in this way.
o As we show in [FGR20], without much extra effort, we can
sum all these cumulants and so recover Lévy’s theorem.

As a comparison, Levin and Wildon[L\W08] obtain Lévy's theorem
from (a much harder) moment expansion.
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A bivariate K-expansion

Let Ki =E;[a YT + b(Y)r7] = ae+ b~ . Then

K! = ae+ba”

K2 = 1(aotbor)?=1a2esap ey 1p2 Y

K = %33\./'4—%a2bW+aQb\Q)+ab2.\{v’.+%abzmwk..

K* = %34\<¢'+2%34W+%a3b%7+%33bv2;
+a3b\%+§a3b%y+...

K = ;a5k<<'<'»+21335v3-+21235‘<'<>*+... (4)
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Forest reordering

@ We see that the G-recursion is equivalent to the bivariate

K-recursion applied to At = aY7 + b(Y) T, after forest
reordering.

e Reorder by collecting all trees with the same number of leaves.

o G-forests consist of trees which are homogenous in the number
of leaves e but not in a, b.

@ Note also that forest reordering resolves the infinite
cancellations present in the bivariate K-expansion.
o To see this put b= —1a% in (4) — we see a very complicated
expression which must sum to zero.
o On the other hand putting b = —12? in (3) trivially results in
zero.
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Forward variance models

@ Let S be a strictly positive continuous martingale.

@ Then X :=log S is a semimartingale with quadratic variation
process (X).

e Following [BG12], it is natural to specify a model in forward
variance form.

vedt = d(X):
&(T) = E¢lvr].

o Forward variances are tradable assets (unlike spot variance).
o We get a family of martingales indexed by their individual time
horizons T.
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VIX squared

o Consider the payoff of a forward-starting variance swap

T4+A
am = 5[ ertwd

1 T+A T+A
= — ET/ vy, du
sl =,

1 T+A
= A/T Er(X) 1,7+,

which, when A is 30 days, is just VIX squared.

e The G-expansion gives us the joint MGF of VIX?, X and (X)
as follows.
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Triple joint MGF

Theorem 3 (Theorem 4.4 of | 1)

For a, b, c € R sufficiently small,

Et |:eaXT+b<X>t,T+CCT(T)i| —exp {aXt F CCt + Z Gk}

where

G* = (fa(a—1)+b)(XoX)(T)+acXo(+3c*(oC,
k—2
1 : .

k k— k—1

G = §§ GV oG + (aX oG ) for k> 2.

Jj=2
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This is a direct consequence of Theorem 1: The time-T quantity
of interest is

Ar = aXt + b<X>t,T + CCT(T)
and it suffices to compute (using that X + 3 (X) is martingale),

E¢[Ar] =aXe +(b—3a) (X o X)e(T)+ ce(T) .

@ Theorem 3 is completely model-independent!
o It is useful in particular when the diamond trees are easy to
compute or approximate.
@ We can get the joint MGF of any set of random variables of
interest in the same way.
o For example, VIX futures are martingales. So the joint MGF of
SPX and VIX is in principle computable!
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Trees with colored leaves

Denote X =o and ( =e.

@ In Theorem 3 we wrote
G®= (3a(a—1)+b) & +ace + Fc2 o~

e We could define (X ¢ X) = M, or &° =, resulting in trees
with leaves of three different colors.
e In a forward variance model, X; represents the log-stock price
and M.(T), the expected total variance ftT &:(u) du.
@ Then

G* = (a(a—1)+b) e+ acar+ Lc2an.

@ In general, we can always identify subtrees in this way and
assign them a new variable name (and leaf color).
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[F-recursion

Putting b = 2a in the G-recursion gives the IF-recursion.

With F2 = La(a—1)a* = a(a—1)e and Vk > 2,

1 . .
= EZ]F"’JOJFJ—F(a Y o Fk—1), (5)

and we have, for sufficiently small a,

log E; [eaXT} =aX;+ ZIFk . (6)
k>2
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On the other hand, Corollary 3.1 of [AGR2020] reads:

Corollary

The cumulant generating function (CGF) is given by

g 1
P:(T; a) = log Ey [e“”XT} =iaXi— Ea(a+z )M (T +Z IFg

(7)
where the [, satisfy the recursion
Fo = —2ta(a+1i) My = —3a(a+i)e and for k > 0,
I . .
Fo == (Feojolfy) +ia (X o). (8)
j=0

o With the identification F;, = F**2, formulae (6) and (7), and
the recursions (5) and (8) are equivalent.
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Applying the recursion (8), the first few [ forests are given by

Fo = —1a(a+i)e

F1 = —1a%(a+i)e~

F, = 2—133 (a+1)2°\f7+%a3(a+i)o\€°
F3 = (Foolfy)+iaeol,

— ERPN  (aN  bt ar)

@ Note that the total probability and martingale constraints are
satisfied for each tree.

o That is 7 (0) = ¢] (=i) = 0
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Variance and gamma swaps

The variance swap is given by the fair value of the log-strip:
Ee[X7] = (=) ¢ (0) = X — 3 M(T)

and the gamma swap (wlog set X; = 0) by

E, [XT eXT} — i ().

We can in principle compute such moments for any stochastic
volatility model written in forward variance form, whether or not
there exists a closed-form expression for the characteristic function.
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The gamma swap

It is easy to see that only trees containing a single o leaf will

survive in the sum after differentiation when a = —i so that
o0 o
=/ . i ol
DT = 53 XM
/=1 /=1

|
N =+

{O\P+q@>+%+...}

Then the fair value of a gamma swap is given by

Ge(T) =2E; [XTeXT]:oJrOvOJrq&JF%JF... (9)

Equation (9) allows for explicit computation of the gamma swap
for any model written in forward variance form.
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The leverage swap

We deduce that the fair value of a leverage swap is given by

[e.o]

L(T) = G(T)—M(T) =) XM

(=1

C e ey (10)

@ The leverage swap is expressed explicitly in terms of
covariance products of the spot and vol. processes.

e If spot and vol. processes are uncorrelated, the fair value of
the leverage swap is zero.

An explicit model-free expression for the leverage swap! J
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L:(T) directly from the smile

o Let
k N ops(k, T)VT

ops(k, TWWT 2
and following Fukasawa [Fuk12], denote the inverse functions
by g+(z) = di'(2). Further define

o+(z) = os(g+(2), T)VT.

@ It is a well-known corollary of Matytsin’s characteristic
function representation in [Mat00], that

Mt(T):/RdzN’(z)az(z).

@ The gamma swap is given by

Qt(T)—/Rdz N’(z)ai(z).

di(k) =
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Fast calibration

@ Foreach T, L«(T)=G(T)— M(T) may be estimated from
the observed smile.

e In the case of SPX, there are currently between 30 and 40
listed expirations.
o Also, L(T) =2, X*M.

@ For models (such as affine forward variance models) where
diamond trees are easily computable, fast calibration is then
possible.
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The Bergomi-Guyon smile expansion

@ The Bergomi-Guyon (BG) smile expansion (Equation (14) of
[BG12]) reads

ops(k, T) =61 + STk +Cr k* + O(3)

where the coefficients 61, St and Ct are complicated
combinations of trees such as &2,

@ The beauty of the BG expansion is that in some sense, it
yields direct relationships between the smile and
autocovariance functionals.
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A formal expansion

Regarding the forest expansion (7) as a formal power series in €
whose power counts the forest index ¢, the characteristic function
of the log stock price may be written in the form

ot(T; a) =exp {iaXt - %a(a—i—i) M(T)+ i GEINFZ(Q)} .

On the other hand, from for example equation (5.7) of [Gat06],

with Xy =0,
©  dy —iuk ([ T . 12450\ _
/0 mRe {e (@t (u—1i/2) —e 2(v?+1) )} _ 0

(11)
where (k) = 034(k, T) T is the implied total variance smile,
k = log K/S is the log-strike, and T is time to expiration.
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Let

T(k) =Y e ay(k).

=0

Equation (11) may then be rewritten in the form

> du ; 1 1\ —
———Re [e7 " exp { <u2 + ) et ag(k)}]

o0 d . R ~
- / o Re etk g H/D D) eXP{ ezIf‘e(u—i/”}]'
0 4 (=1
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Matching powers of € on each side of (12) gives the coefficients
ag(k) in terms of diamond trees, for any £ € Z™.

(k) = M(T)=e
k 1
= ([=+2)e~
21(k) <M + 2)
5k 2k 3 1

k) = 2)_ = 20 2 4 -
22(k) ( ){ M3 M+M2+4M}
lag (11

4 I\/I2 M 4

k 1 1

Lo -
+( ) +M wta
It is straightforward to verify that the resulting expansion coincides
with that of Bergomi and Guyon up to second order in e.
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Bergomi-Guyon to higher order

This algorithm can be extended to any desired order. For example,

al) = oD+ (Y + 1) 1y
+ieres [T, — 277 0 To 4
o2 2 [Ty 3 — T10 To1 To o)
+3 (o°)° [To3 — T20231 — 3T10Z01 (T2 — T10Z54)] -
(13)

@ The Z;; are Hermite-like polynomials in k.
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We may compute the coefficients in (13) explicitly as follows.

W B W W % 31
SE st o v Tam 2w T B

k3 k2 3k k 1 1
Tig = + — 5 T e —
’ 2M3  4M2 2M2  8M  4M 16
2k3 k2 k 7k 1
M 32/\/13 +24M2
Tiy—TioZo1Zo2 = —A;\% - % - 2Tk/12 + ;7!(3 + % + 8LM
Io3—1Isp 18,1 —3T107Z01 (Tip — Tap I&l)

39k3 4542 3k 24k 3 9

“onE At TeME T ME T 16MZ 2B

2
Ton —IigZon = —




Third order skew

The ATM total variance skew is given by
3
) = > a0+ o)
£=0
. fap, 2% @ ey
M M

2 M2

Hq33meg()C& 1)

4M M2 2M2

%wwwwi+4+gw&&pg,i}

+
am? 2Mm3 2M2 M3

(W) [ - i} + O(e*).

16M3 M4

@ Compare with the approximation
1
f@zM{w+%u%@+}

in [Fuk14].



9000000000000 00

Affine forward variance models

Following [GKR19] consider affine forward variance models of the
form

a5 = JvdZ,
St

déi(u) = r(u—t)\/ve dWs,
with d(W,Z); = pdt.

@ This class of models includes classical and rough Heston.

@ As we will see, diamond trees are particularly easy to compute
in AFV models.
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Affine trees

Lemma 5 (Lemma 4.5 of | 1)

In an affine forward variance model, all diamond trees take the form

T
/t E(u)h(T — u)du

for some function h.
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Classical Heston

Example (Classical Heston)

In this case,
dér(u) = ve 27 /v dW.

Then, for example,

= (XoM)(T) = p;/tT & () [l—e_A(T_“) du.




000e00000000000

Rough Heston

Example (Rough Heston)
In this case, with o« = H+1/2 € (1/2,1) (and with A =0),

(u—t)* 1 /ve dW.

dé(w) = 713

Then, for example,

o= M(T) = (XoX)t(T):/t &t(u) du,

o — r(i)Q/tTft(u)du (/UT(s—u)alds>2

2 T o
= r(1+a)2/t O
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o For a bounded forward variance curve ¢ one then sees that
diamond trees with k leaves are of order (T — t)1*(k=2)e

@ In this case, the [F-expansion (forest reordering according to
number of leaves) has the interpretation of a short-time
expansion, the concrete powers of which depend on the
roughness parameter « = H +1/2 € (1/2,1), cf.

[CGP21, GR19].
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The triple joint MGF in affine forward variance models

@ Lemma 5 combined with Theorem 3 characterize the
triple-joint MGF of X, (X)7 and (7(T) for an affine forward
variance model.

o Compare with Theorem 4.3 of [AJLP2019] and Proposition 4.6
of [GKR19].

@ We obtain the convolutional form
E, [eaXT+b<X>f7T+CCT(T) =exp{aX;+ (Exg)(r;a,b,¢)e(T)} .

@ This is consistent with (and generalizes) Theorem 2.6 of
[GKR19] where the same convolution Riccati equation
appears, but with g = g(7; a) instead of (7; a, b, ¢) and
different boundary conditions.



000000e00000000

Computation of trees under rough Heston

Abbreviating bounded variation terms as ‘BV’, we have
dX; = /v+dZ:+ BV

i
dM, = / dé(u) du + BV
t

v(T —1t)*
= LT Y A dW, + BV
Ml+a) ve dWe +




0000000000000 0

The first order forest

There is only one tree in the forest ;.

. T

Flzovo:(XOM)t(T) = Et |:/ d<X,M>s:|
t

- r(lp:aEt[/TVs(T )ds}

/gt
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Higher order forests
Define for j > 0
. T -
19(TY = / ds&o(s) (T — sy
t
Then

did(T) = /T du dés(u) (T —u)fa—i—BV

_ ”\/‘75 / T =0 By
F(l—i—ja

(T — s)UtDa g, + BV.
M+ G )”W( °) "

With this notation,
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The second order forest

There are two trees in Fy:

» = E, qu<M, I\/I)S}

1/2 T

= W/t E(s) (T —s)*“ds
v @

= farap (7

and

o i)
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The third order forest

Continuing to the forest I3, we have the following.

_ pv° 3)
= r(1+a)r(1+2a)lt (7)

3.3
e PV 0)
N F(l+3o¢)lt (7)
3
prPT(1+2a) (3
F(14a)2T(1+30) ().

In particular, we readily identify the pattern

v V4
(ew) (1) = 20
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The leverage swap under rough Heston

Using (10), we have

L = Y (x'm) (1)

(=1

00 v ¢ T
Zr(ﬁ)w) / du¢(u) (T — u)'®

=1
-
— [ duw) (Ealpr (T =) - 1)
t
where E,(-) denotes the Mittag-Leffler function.

An explicit expression for the leverage swap! J

@ Since we can impute the leverage swap L(t) from the smile
for each expiration T, fast calibration of the rough Heston
model is possible.
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Summary

@ We introduced the diamond product.

@ We defined the G-expansion and gave an idea of its proof.

o The cumulant expansion of [LRV19] and the Exponentiation
Theorem of [AGR2020] are special cases.

@ We showed how easy computations can be in affine forward
variance models.

e Quick calibration of such models is one application.
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