Monthly Archives: July 2010

Bottazzi G. and Pirino D. (2010). Measuring Industry Relatedness and Corporate Coherence.

Abstract
Since the seminal contribution of Teece et al. (1994), the strength, scope and quality of corporate diversification is often detected comparing the observed value of some statistics derived from the diversification patterns of a sample of firms, with its expected value. The latter is obtained under a null hypothesis which assumes some random assignment procedure of sectors to firms. The approaches generally adopted in the literature present two problems. First, being based on the observed value of a statistic, these methods could lead, depending on the nature of the sample, to noisy and non-homogeneous estimates. Second, the benchmark value used to identify the presence and strength of deterministic patterns are obtained under specific and privileged null hypothesis. Both effects could lead to the erroneous classification of spurious random effects as deterministic. This paper shows that the adoption of p-scores as measure of relatedness strongly alleviate the first problem, leading to cleaner and more homogeneous estimates. We design and implement a null hypothesis which rules out random artifacts and effectively identify new features in firm diversification pattern. Using the NBER database on patents, we apply our results to the study of the relationship between the coherence and the scope of corporate patent portfolios.
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1831479

 

Pirino D. and RenĂ² R. (2010). Electricity prices: a non-parametric approach. International Journal of Theoretical and Applied Finance, 13(2), 285-299.

Abstract
We propose a simple univariate model for the dynamics of spot electricity prices. The model is nonparametric in the sense that it is free from parametric model assumptions and flexible in capturing the dynamics of the data. The estimation is performed in two steps. Preliminarily, spikes are identified by means of an iterative filtering technique. The series of spikes is used to estimate a seasonal spike intensity function and fitted with an exponential law. We then implement Nadaraya-Watson estimators for the drift and the diffusion coefficients on the filtered series. Monte Carlo simulations are used to evaluate estimation errors.
We fit the model on European and American time series of spot day-ahead electricity prices; in spite of the simplicity of the proposed model, our specification tests indicate successful goodness-of-fit. We provide evidence for mean-reversion, nonlinear volatility and seasonal spike intensity; moreover we find that American markets show a very low level of mean reversion and a lower volatility with respect to their European counterparts.
http://www.worldscientific.com/doi/pdfplus/10.1142/S0219024910005772

Corsi, F., Pirino, D., and RenĂ², R. (2010). Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics, 159(2), 276-288

Abstract
This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is separated into its continuous and discontinuous components using estimators which are not only consistent, but also scarcely plagued by small sample bias. With the aim of achieving this, we introduce the concept of threshold bipower variation, which is based on the joint use of bipower variation and threshold estimation. We show that its generalization (threshold multipower variation) admits a feasible central limit theorem in the presence of jumps and provides less biased estimates, with respect to the standard multipower variation, of the continuous quadratic variation in finite samples. We further provide a new test for jump detection which has substantially more power than tests based on multipower variation. Empirical analysis (on the S&P500 index, individual stocks and US bond yields) shows that the proposed techniques improve significantly the accuracy of volatility forecasts especially in periods following the occurrence of a jump.
http://www.sciencedirect.com/science/article/pii/S0304407610001600