Author Archives: Damian Taranto

About Damian Taranto

Market microstructure

Taranto, D. E., Bormetti, G., Bouchaud, J.-P., Toth, B., and Lillo, F. (2016). Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model

Abstract

Modeling the impact of the order flow on asset prices is of primary importance to understand the behavior of financial markets. Part I of this paper reported the remarkable improvements in the description of the price dynamics which can be obtained when one incorporates the impact of past returns on the future order flow. However, impact models presented in Part I consider the order flow as an exogenous process, only characterized by its two-point correlations. This assumption seriously limits the forecasting ability of the model. Here we attempt to model directly the stream of discrete events with a so-called Mixture Transition Distribution (MTD) framework, introduced originally by Raftery (1985). We distinguish between price-changing and non price-changing events and combine them with the order sign in order to reduce the order flow dynamics to the dynamics of a four-state discrete random variable. The MTD represents a parsimonious approximation of a full high-order Markov chain. The new approach captures with adequate realism the conditional correlation functions between signed events for both small and large tick stocks and signature plots. From a methodological viewpoint, we discuss a novel and flexible way to calibrate a large class of MTD models with a very large number of parameters. In spite of this large number of parameters, an out-of-sample analysis confirms that the model does not overfit the data.

http://arxiv.org/abs/1604.07556

Taranto, D. E., Bormetti, G., Bouchaud, J.-P., Toth, B., and Lillo, F. (2016). Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact

Abstract

Market impact is a key concept in the study of financial markets and several models have been proposed in the literature so far. The Transient Impact Model (TIM) posits that the price at high frequency time scales is a linear combination of the signs of the past executed market orders, weighted by a so-called propagator function. An alternative description — the History Dependent Impact Model (HDIM) — assumes that the deviation between the realised order sign and its expected level impacts the price linearly and permanently. The two models, however, should be extended since prices are a priori influenced not only by the past order flow, but also by the past realisation of returns themselves. In this paper, we propose a two-event framework, where price-changing and non price-changing events are considered separately. Two-event propagator models provide a remarkable improvement of the description of the market impact, especially for large tick stocks, where the events of price changes are very rare and very informative. Specifically the extended approach captures the excess anti-correlation between past returns and subsequent order flow which is missing in one-event models. Our results document the superior performances of the HDIMs even though only in minor relative terms compared to TIMs. This is somewhat surprising, because HDIMs are well grounded theoretically, while TIMs are, strictly speaking, inconsistent.

http://arxiv.org/abs/1602.02735

Taranto, D. E., Bormetti, G., and Lillo, F. (2014) The adaptive nature of liquidity taking in limit order books. Journal of Statistical Mechanics: Theory and Experiment 2014.6: P06002

Abstract

In financial markets, the order flow, defined as the process assuming value one for buy market orders and minus one for sell market orders, displays a very slowly decaying autocorrelation function. Since orders impact prices, reconciling the persistence of the order flow with market efficiency is a subtle issue. A possible solution is provided by asymmetric liquidity, which states that the impact of a buy or sell order is inversely related to the probability of its occurrence. We empirically find that when the order flow predictability increases in one direction, the liquidity in the opposite side decreases, but the probability that a trade moves the price decreases significantly. While the last mechanism is able to counterbalance the persistence of order flow and restore efficiency and diffusivity, the first acts in the opposite direction. We introduce a statistical order book model where the persistence of the order flow is mitigated by adjusting the market order volume to the predictability of the order flow. The model reproduces the diffusive behaviour of prices at all time scales without fine-tuning the values of parameters, as well as the behaviour of most order book quantities as a function of the local predictability of the order flow.

http://dx.doi.org/10.1088/1742-5468/2014/06/P06002